Created
April 11, 2017 06:29
-
-
Save yujuwon/7d1a632dd9b3cc3d80e56821447f3b85 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import tensorflow as tf | |
| import matplotlib.pyplot as plt | |
| %matplotlib inline | |
| learning_rate = 0.1 | |
| training_epochs = 2000 | |
| def sigmoid(x): | |
| return 1. / (1. + np.exp(-x)) | |
| x1_label1 = np.random.normal(3, 1, 1000) | |
| x2_label1 = np.random.normal(2, 1, 1000) | |
| x1_label2 = np.random.normal(7, 1, 1000) | |
| x2_label2 = np.random.normal(6, 1, 1000) | |
| x1s = np.append(x1_label1, x1_label2) | |
| x2s = np.append(x2_label1, x2_label2) | |
| ys = np.asarray([0.] * len(x1_label1) + [1.] * len(x1_label2)) | |
| X1 = tf.placeholder(tf.float32, shape=(None,), name="x1") | |
| X2 = tf.placeholder(tf.float32, shape=(None,), name="x2") | |
| Y = tf.placeholder(tf.float32, shape=(None,), name="y") | |
| w = tf.Variable([0., 0., 0.], name="w", trainable=True) | |
| y_model = tf.sigmoid(w[2] * X2 + w[1] * X1 + w[0]) | |
| cost = tf.reduce_mean(-tf.log(y_model * Y + (1 - y_model) * (1 - Y))) | |
| train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
| with tf.Session() as sess: | |
| sess.run(tf.global_variables_initializer()) | |
| prev_err = 0 | |
| for epoch in range(training_epochs): | |
| err, _ = sess.run([cost, train_op], {X1: x1s, X2: x2s, Y: ys}) | |
| print(epoch, err) | |
| if abs(prev_err - err) < 0.0001: | |
| break | |
| prev_err = err | |
| w_val = sess.run(w, {X1: x1s, X2: x2s, Y: ys}) | |
| x1_boundary, x2_boundary = [], [] | |
| for x1_test in np.linspace(0, 10, 100): | |
| for x2_test in np.linspace(0, 10, 100): | |
| z = sigmoid(-x2_test*w_val[2] - x1_test*w_val[1] - w_val[0]) | |
| if abs(z - 0.5) < 0.01: | |
| x1_boundary.append(x1_test) | |
| x2_boundary.append(x2_test) | |
| plt.scatter(x1_boundary, x2_boundary, c='b', marker='o', s=20) | |
| plt.scatter(x1_label1, x2_label1, c='r', marker='x', s=20) | |
| plt.scatter(x1_label2, x2_label2, c='g', marker='1', s=20) | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment