Created
February 22, 2017 02:41
-
-
Save yujuwon/a060f8f57322ce6f6f82db251f8ccda0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import os.path | |
| import re | |
| import sys | |
| import numpy as np | |
| import tensorflow as tf | |
| FLAGS = tf.app.flags.FLAGS | |
| tf.app.flags.DEFINE_string( | |
| 'model_dir', './', | |
| """Path to classify_image_graph_def.pb, """ | |
| """imagenet_synset_to_human_label_map.txt, and """ | |
| """imagenet_2012_challenge_label_map_proto.pbtxt.""") | |
| tf.app.flags.DEFINE_integer('num_top_predictions', 5, | |
| """Display this many predictions.""") | |
| def NodeLookup(object): | |
| def __init__(self, | |
| label_lookup_path=None, | |
| uid_lookup_path=None): | |
| if not label_lookup_path: | |
| label_lookup_path = os.path.join( | |
| FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') | |
| if not uid_lookup_path: | |
| uid_lookup_path = os.path.join( | |
| FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt') | |
| self.node_lookup = self.load(label_lookup_path, uid_lookup_path) | |
| def load(self, label_lookup_path, uid_lookup_path): | |
| if not tf.gfile.Exists(uid_lookup_path): | |
| tf.logging.fatal('File does not exist %s', uid_lookup_path) | |
| if not tf.gfile.Exists(label_lookup_path): | |
| tf.logging.fatal('File does not exist %s', label_lookup_path) | |
| proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() | |
| uid_to_human = {} | |
| p = re.compile(r'[n\d]*[ \S,]*') | |
| for line in proto_as_ascii_lines: | |
| parsed_items = p.findall(line) | |
| uid = parsed_items[0] | |
| human_string = parsed_items[2] | |
| uid_to_human[uid] = human_string | |
| node_id_to_uid = {} | |
| proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() | |
| for line in proto_as_ascii: | |
| if line.startswith(' target_class:'): | |
| target_class = int(line.split(': ')[1]) | |
| if line.startswith(' target_class_string:'): | |
| target_class_string = line.split(': ')[1] | |
| node_id_to_uid[target_class] = target_class_string[1:-2] | |
| node_id_to_name = {} | |
| for key,val in node_id_to_uid.items(): | |
| if val not in uid_to_human: | |
| tf.logging.fatal('Failed to locate: %s', val) | |
| name = uid_to_human[val] | |
| node_id_to_name[key] = name | |
| return node_id_to_name | |
| def create_graph(): | |
| with tf.gfile.FastGFile(os.path.join( | |
| FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f: | |
| graph_def = tf.GraphDef() | |
| graph_def.ParseFromString(f.read()) | |
| _ = tf.import_graph_def(graph_def, name='') | |
| def run_inference_on_image(image_path): | |
| create_graph() | |
| if not tf.gfile.Exists(image_path): | |
| tf.logging.fatal('File does not exist %s', image_path) | |
| image_data = tf.gfile.FastGFile(image_path, 'rb').read() | |
| with tf.Session() as sess: | |
| softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') | |
| predictions = sess.run(softmax_tensor, | |
| {'DecodeJpeg/contents:0': image_data}) | |
| predictions = np.squeeze(predictions) | |
| node_lookup = NodeLookup() | |
| top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1] | |
| for node_id in top_k: | |
| human_strings.append(node_lookup.id_to_string(node_id)) | |
| scores.append(predictions[node_id]) | |
| print('%s (score = %.5f)' % (human_string, score)) | |
| def main(argv=None): | |
| if argv is None: | |
| argv = sys.argv | |
| run_inference_on_image(argv[1]) | |
| if __name__ == '__main__': | |
| tf.app.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment