Last active
July 12, 2017 02:28
-
-
Save yujuwon/b515bc56cc057cc23ed5848814b3fc86 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def dual_encoder_model( | |
| hparams, | |
| mode, | |
| context, | |
| context_len, | |
| utterance, | |
| utterance_len, | |
| targets): | |
| # Initialize embedidngs randomly or with pre-trained vectors if available | |
| embeddings_W = get_embeddings(hparams) | |
| # Embed the context and the utterance | |
| context_embedded = tf.nn.embedding_lookup( | |
| embeddings_W, context, name="embed_context") | |
| utterance_embedded = tf.nn.embedding_lookup( | |
| embeddings_W, utterance, name="embed_utterance") | |
| # Build the RNN | |
| with tf.variable_scope("rnn") as vs: | |
| # We use an LSTM Cell | |
| cell = tf.nn.rnn_cell.LSTMCell( | |
| hparams.rnn_dim, | |
| forget_bias=2.0, | |
| use_peepholes=True, | |
| state_is_tuple=True) | |
| # Run the utterance and context through the RNN | |
| rnn_outputs, rnn_states = tf.nn.dynamic_rnn( | |
| cell, | |
| tf.concat(0, [context_embedded, utterance_embedded]), | |
| sequence_length=tf.concat(0, [context_len, utterance_len]), | |
| dtype=tf.float32) | |
| encoding_context, encoding_utterance = tf.split(0, 2, rnn_states.h) | |
| with tf.variable_scope("prediction") as vs: | |
| M = tf.get_variable("M", | |
| shape=[hparams.rnn_dim, hparams.rnn_dim], | |
| initializer=tf.truncated_normal_initializer()) | |
| # "Predict" a response: c * M | |
| generated_response = tf.matmul(encoding_context, M) | |
| generated_response = tf.expand_dims(generated_response, 2) | |
| encoding_utterance = tf.expand_dims(encoding_utterance, 2) | |
| # Dot product between generated response and actual response | |
| # (c * M) * r | |
| logits = tf.batch_matmul(generated_response, encoding_utterance, True) | |
| logits = tf.squeeze(logits, [2]) | |
| # Apply sigmoid to convert logits to probabilities | |
| probs = tf.sigmoid(logits) | |
| if mode == tf.contrib.learn.ModeKeys.INFER: | |
| return probs, None | |
| # Calculate the binary cross-entropy loss | |
| losses = tf.nn.sigmoid_cross_entropy_with_logits(logits, tf.to_float(targets)) | |
| # Mean loss across the batch of examples | |
| mean_loss = tf.reduce_mean(losses, name="mean_loss") | |
| return probs, mean_loss |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment