Created
April 13, 2017 07:09
-
-
Save yujuwon/c070aa2b3a645e3eb6e84b6f216a03dc to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import tensorflow as tf | |
| class HMM(object): | |
| def __init__(self, initial_prob, trans_prob, obs_prob): | |
| self.N = np.size(initial_prob) | |
| self.initial_prob = initial_prob | |
| self.trans_prob = trans_prob | |
| self.emission = tf.constant(obs_prob) | |
| assert self.initial_prob.shape == (self.N, 1) | |
| assert self.trans_prob.shape == (self.N, self.N) | |
| assert obs_prob.shape[0] == self.N | |
| self.obs_idx = tf.placeholder(tf.int32) | |
| self.fwd = tf.placeholder(tf.float64) | |
| def get_emission(self, obs_idx): | |
| slice_location = [0, obs_idx] | |
| num_rows = tf.shape(self.emission)[0] | |
| slice_shape = [num_rows, 1] | |
| return tf.slice(self.emission, slice_location, slice_shape) | |
| def forward_init_op(self): | |
| obs_prob = self.get_emission(self.obs_idx) | |
| fwd = tf.mul(self.initial_prob, obs_prob) | |
| return fwd | |
| def forward_op(self): | |
| transitions = tf.matmul(self.fwd, tf.transpose(self.get_emission(self.obs_idx))) | |
| weighted_transitions = transitions * self.trans_prob | |
| fwd = tf.reduce_sum(weighted_transitions, 0) | |
| return tf.reshape(fwd, tf.shape(self.fwd)) | |
| def forward_algorithm(sess, hmm, observations): | |
| fwd = sess.run(hmm.forward_init_op(), feed_dict={hmm.obs_idx: observations[0]}) | |
| for t in range(1, len(observations)): | |
| fwd = sess.run(hmm.forward_op(), feed_dict={hmm.obs_idx: observations[t], hmm.fwd:fwd}) | |
| prob = sess.run(tf.reduce_sum(fwd)) | |
| return prob | |
| initial_prob = np.array([[0.6], [0.4]]) | |
| trans_prob = np.array([[0.7, 0.3], [0.4, 0.6]]) | |
| obs_prob = np.array([[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]]) | |
| hmm = HMM(initial_prob=initial_prob, trans_prob=trans_prob, obs_prob=obs_prob) | |
| observations = [0, 1, 1, 2, 1] | |
| with tf.Session() as sess: | |
| prob = forward_algorithm(sess, hmm, observations) | |
| print('Probability of observing {} is {}'.format(observations, prob)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment