Created
April 12, 2017 02:53
-
-
Save yujuwon/c2a7c6ed5e0a38417ee7e7c11309624c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| %matplotlib inline | |
| def traindata(): | |
| x1_label0 = np.random.normal(1, 1, (100, 1)) | |
| x2_label0 = np.random.normal(1, 1, (100, 1)) | |
| x1_label1 = np.random.normal(5, 1, (100, 1)) | |
| x2_label1 = np.random.normal(4, 1, (100, 1)) | |
| x1_label2 = np.random.normal(8, 1, (100, 1)) | |
| x2_label2 = np.random.normal(0, 1, (100, 1)) | |
| xs_label0 = np.hstack((x1_label0, x2_label0)) | |
| xs_label1 = np.hstack((x1_label1, x2_label1)) | |
| xs_label2 = np.hstack((x1_label2, x2_label2)) | |
| xs = np.vstack((xs_label0, xs_label1, xs_label2)) | |
| labels = np.matrix([[1., 0., 0.]] * len(x1_label0) + [[0., 1., 0.]] * len(x1_label1) + [[0., 0., 1.]] * len(x1_label2)) | |
| arr = np.arange(xs.shape[0]) | |
| np.random.shuffle(arr) | |
| xs = xs[arr, :] | |
| labels = labels[arr, :] | |
| return xs, labels | |
| def testdata(): | |
| test_x1_label0 = np.random.normal(1, 1, (10, 1)) | |
| test_x2_label0 = np.random.normal(1, 1, (10, 1)) | |
| test_x1_label1 = np.random.normal(5, 1, (10, 1)) | |
| test_x2_label1 = np.random.normal(4, 1, (10, 1)) | |
| test_x1_label2 = np.random.normal(8, 1, (10, 1)) | |
| test_x2_label2 = np.random.normal(0, 1, (10, 1)) | |
| test_xs_label0 = np.hstack((test_x1_label0, test_x2_label0)) | |
| test_xs_label1 = np.hstack((test_x1_label1, test_x2_label1)) | |
| test_xs_label2 = np.hstack((test_x1_label2, test_x2_label2)) | |
| test_xs = np.vstack((test_xs_label0, test_xs_label1, test_xs_label2)) | |
| test_labels = np.matrix([[1., 0., 0.]] * 10 + [[0., 1., 0.]] * 10 + [[0., 0., 1.]] * 10) | |
| return test_xs, test_labels | |
| train, train_label = traindata() | |
| test, test_label = testdata() | |
| train_size, num_features = train.shape | |
| learning_rate = 0.01 | |
| training_epochs = 1000 | |
| num_labels = 3 | |
| batch_size = 100 | |
| X = tf.placeholder("float", shape=[None, num_features]) | |
| Y = tf.placeholder("float", shape=[None, num_labels]) | |
| W = tf.Variable(tf.zeros([num_features, num_labels])) | |
| b = tf.Variable(tf.zeros([num_labels])) | |
| y_model = tf.nn.softmax(tf.matmul(X, W) + b) | |
| cost = -tf.reduce_sum(Y * tf.log(y_model)) | |
| train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
| correct_prediction = tf.equal(tf.argmax(y_model, 1), tf.argmax(Y, 1)) | |
| accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) | |
| with tf.Session() as sess: | |
| tf.global_variables_initializer().run() | |
| for step in range(training_epochs * train_size // batch_size): | |
| offset = (step * batch_size) % train_size | |
| batch_xs = train[offset:(offset + batch_size), :] | |
| batch_labels = train_label[offset:(offset + batch_size)] | |
| err, _ = sess.run([cost, train_op], feed_dict={X: batch_xs, Y: batch_labels}) | |
| print(step,err) | |
| W_val = sess.run(W) | |
| print('w', W_val) | |
| b_val = sess.run(b) | |
| print('b', b_val) | |
| print("accuracy", accuracy.eval(feed_dict={X: test, Y: test_label})) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment