Created
April 10, 2017 02:20
-
-
Save yujuwon/c2c7b69ecd11a5bbee010706cd6c46c7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import tensorflow as tf | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| %matplotlib inline | |
| x_label0 = np.random.normal(5,1,10) | |
| x_label1 = np.random.normal(2,1,10) | |
| xs = np.append(x_label0, x_label1) | |
| labels = [0.] * len(x_label0) + [1.] * len(x_label1) | |
| plt.scatter(xs, labels) | |
| learning_rate = 0.001 | |
| training_epochs = 1000 | |
| X = tf.placeholder("float") | |
| Y = tf.placeholder("float") | |
| def model(X, w): | |
| return tf.add(tf.multiply(w[1], tf.pow(X, 1)), | |
| tf.multiply(w[0], tf.pow(X, 0))) | |
| w = tf.Variable([0., 0.], name="parameters") | |
| y_model = model(X,w) | |
| cost = tf.reduce_sum(tf.square(Y-y_model)) | |
| train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
| sess = tf.Session() | |
| init = tf.global_variables_initializer() | |
| sess.run(init) | |
| for epoch in range(training_epochs): | |
| sess.run(train_op, feed_dict={X:xs, Y:labels}) | |
| current_cost = sess.run(cost, feed_dict={X:xs, Y:labels}) | |
| if epoch % 100 == 0: | |
| print(epoch, current_cost) | |
| w_val = sess.run(w) | |
| print('learned parameters', w_val) | |
| sess.close() | |
| all_xs = np.linspace(0, 10, 100) | |
| plt.plot(all_xs, all_xs*w_val[1] + w_val[0]) | |
| plt.show() | |
| correct_prediction = tf.equal(Y, tf.to_float(tf.greater(y_model, 0.5))) | |
| accuracy = tf.reduce_mean(tf.to_float(correct_prediction)) | |
| print('accuracy', sess.run(accuracy, feed_dict={X:xs, Y: labels})) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment