Skip to content

Instantly share code, notes, and snippets.

@yujuwon
Created April 18, 2017 04:30
Show Gist options
  • Select an option

  • Save yujuwon/d111e9d60b00b9a014dda15819aa227a to your computer and use it in GitHub Desktop.

Select an option

Save yujuwon/d111e9d60b00b9a014dda15819aa227a to your computer and use it in GitHub Desktop.
import pickle
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
def unpickle(file):
fo = open(file, 'rb')
dict = pickle.load(fo)
fo.close()
return dict
def grayscale(a):
return a.reshape(a.shape[0], 3, 32, 32).mean(1).reshape(a.shape[0], -1)
def data_show(data, data_len):
plt.rcParams['figure.figsize'] = (2, 2)
for i in range(data_len):
img = np.reshape(data[i,:], (32, 32))
plt.subplot(1, data_len, i+1)
plt.imshow(img, cmap='gray')
names = unpickle('./cifar-10-batches-py/batches.meta')['label_names']
data, labels = [], []
for i in range(1, 6):
filename = './cifar-10-batches-py/data_batch_' + str(i)
batch_data = unpickle(filename)
if len(data) > 0:
data = np.vstack((data, batch_data['data']))
labels = np.hstack((labels, batch_data['labels']))
else:
data = batch_data['data']
labels = batch_data['labels']
data = grayscale(data)
x = np.matrix(data)
y = np.array(labels)
horse_indices = np.where(y == 7)[0]
horse_x = x[horse_indices]
input_dim = np.shape(horse_x)[1]
hidden_dim = 100
ae = Autoencoder(input_dim, hidden_dim, 10000)
ae.train(horse_x)
test_data = unpickle('./cifar-10-batches-py/test_batch')
test_x = grayscale(test_data['data'])
test_labels = np.array(test_data['labels'])
test_1 = test_x[13].reshape(1, np.shape(test_x[13])[0])
print(np.shape(test_1))
data_show(test_1, 1)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment