-
-
Save yuletide/2933510 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(RJSONIO) | |
library(foreign) | |
input_dir = "~/data/twitter-workshop/input/" | |
snow = read.csv(paste0(input_dir, "snow_pot.csv")) | |
props = read.dbf(paste0(input_dir, "SecondAuctionProperties.dbf")) | |
# Note: Need to remove a leading '\' from the MenByTract file before it will load | |
income = fromJSON(paste0(input_dir, "medianIncomeByTract.json")) | |
incomeEdu = fromJSON(paste0(input_dir, "medianIncomesByEduAndTract.json")) | |
incomeMen = fromJSON(paste0(input_dir, "medianIncomesMenByTract.json")) | |
incomeMenEdu = fromJSON(paste0(input_dir, "medianIncomesMenByEduAndTract.json")) | |
incomeWomen = fromJSON(paste0(input_dir, "medianIncomesWomenByTract.json")) | |
incomeWomenEdu = fromJSON(paste0(input_dir, "medianIncomesWomenByEduAndTract.json")) | |
all_tracts = lapply(income, function(county) | |
lapply(county$tracts, function(tract) as.data.frame(c(county[1:3],tract)))) | |
all_tracts_temp = lapply(all_tracts, function(county) as.data.frame(do.call(rbind, county))) | |
income_df = as.data.frame(do.call(rbind, all_tracts_temp)) | |
summary(income_df) | |
ff = as.numeric(income_df$medianIncome) | |
ff = as.numeric(as.character(income_df$medianIncome)) | |
income_df$medianIncome = as.numeric(as.character(income_df$medianIncome)) | |
# Income and Education | |
flatten_list <- function(income, numFields=NULL) { | |
all_tracts = lapply(income, function(county) | |
lapply(county$tracts, function(tract) as.data.frame(c(county[1:3],tract)))) | |
all_tracts_temp = lapply(all_tracts, function(county) as.data.frame(do.call(rbind, county))) | |
income_df = as.data.frame(do.call(rbind, all_tracts_temp)) | |
if (length(numFields) >0) { | |
for (field in numFields) { | |
income_df[,field] = as.numeric(as.character(income_df[,field])) | |
} | |
} | |
income_df | |
} | |
income_df <- flatten_list(income, numFields = c("medianIncome")) | |
incomeEdu_df <- flatten_list(incomeEdu, numFields = c("PreHighSchool", "HighSchool", "SomeCollegeAssociate", "Bachelor", "Pro")) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment