Last active
February 10, 2017 13:48
-
-
Save yunho0130/237ebea66661c1af5c0c74b782dddb79 to your computer and use it in GitHub Desktop.
2016-07-26
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
install.packages("tm") | |
library(tm) | |
#mobile | |
news <- read.csv("mobile2014.csv",stringsAsFactors=F) | |
news.corpus <- Corpus(VectorSource(news$x)) | |
news.corpus <- tm_map(news.corpus, stemDocument, language = "english") | |
tdm <- TermDocumentMatrix(news.corpus, | |
control = list(removeNumbers = T, | |
removePunctuation = T, | |
stopwords=stopwords("SMART"), | |
weighting=weightTfIdf)) | |
dim(tdm) | |
#install.packages("slam") | |
library(slam) | |
word.count <- as.array(rollup(tdm, 2)) | |
word.order <- order(word.count, decreasing = T) | |
freq.word <- word.order[1:30] | |
row.names(tdm[freq.word,]) | |
freq.word <- word.order[1:1000] | |
# latent semantic analysis | |
install.packages("lsa") | |
library(lsa) | |
news.lsa <- lsa(tdm,30) # if it doesn't work, reduce the dimensions | |
gc() # garbage collector | |
news.lsa <- lsa(tdm[freq.word,], 30) # 30 dimensions | |
news.lsa$tk[,1] # first dimension | |
for(i in 1:30){ # show relevant words of each dimension | |
print(i) | |
importance <- order(abs(news.lsa$tk[,i]), decreasing = T) | |
print(news.lsa$tk[importance[1:10], i]) | |
} | |
install.packages("GPArotation") | |
library(GPArotation) # varimax rotation | |
tk <- Varimax(news.lsa$tk)$loadings | |
for(i in 1:30){ # show relevant words of each dimension | |
print(i) | |
importance <- order(abs(tk[,i]), decreasing = T) | |
print(tk[importance[1:10], i]) | |
} | |
#mobile | |
news <- read.csv("mobile2014.csv",stringsAsFactors=F) | |
news.corpus <- Corpus(VectorSource(news$x)) | |
news.corpus <- tm_map(news.corpus, stemDocument, language = "english") | |
tdm <- TermDocumentMatrix(news.corpus, | |
control = list(removeNumbers = T, | |
removePunctuation = T, | |
wordLengths=c(3,Inf), | |
stopwords=stopwords("SMART"), | |
weighting=weightTfIdf)) | |
dim(tdm) | |
#LDA | |
# install.packages("topicmodels") | |
# library(topicmodels) | |
# install.packages("lda") | |
# library(lda) | |
# install.packages("SnowballC") | |
# library(SnowballC) | |
ldaform <- dtm2ldaformat(tdm, omit_empty = T) | |
result.lda <- lda.collapsed.gibbs.sampler(documents = ldaform$documents, | |
K = 15, # number of topics | |
vocab = ldaform$vocab, # used words | |
num.iterations = 5000, # number of iterations | |
burnin = 1000, # number of past iterations to used | |
alpha = 0.01, # amount of topics in a document if it is greater than 1, there are many topics in a document. If it is less than 0 there are less number of topics in a document. | |
eta = 0.01) # amount of words in a topic | |
result.lda$topics | |
lw <- as.matrix(top.topic.words(result.lda$topics)) | |
result.lda$topic_sums | |
result.lda$document_sums | |
tdm | |
for(j in 1:15){ | |
cat(j) | |
cat(": ") | |
for(i in 1:5){ | |
cat(row.names(tdm[as.numeric(lw[i,j]),])) | |
cat(", ") # show words in Topic 1 | |
} | |
print(" ") | |
} | |
#daum review | |
new.reviews <- read.csv("reviews.csv",stringsAsFactors=F) | |
review.corpus <- Corpus(VectorSource(new.reviews$x)) | |
library(KoNLP) | |
ko.words.noun <- function(doc){ | |
d <- as.character(doc) | |
pos <- extractNoun(d) | |
} | |
options(mc.cores=1) | |
tdm2 <- TermDocumentMatrix(review.corpus,control=list(tokenize=ko.words.noun,wordLengths=c(1,Inf),removePunctuation=T,removeNumbers=T)) | |
ldaform2 <- dtm2ldaformat(tdm2, omit_empty = T) | |
result.lda2 <- lda.collapsed.gibbs.sampler(documents = ldaform2$documents, | |
K = 3, # number of topics | |
vocab = ldaform2$vocab, # used words | |
num.iterations = 5000, # number of iterations | |
burnin = 1000, # number of past iterations to used | |
alpha = 0.01, # amount of topics in a document if it is greater than 1, there are many topics in a document. If it is less than 0 there are less number of topics in a document. | |
eta = 0.01) # amount of words in a topic | |
result.lda2$topics | |
lw2 <- as.matrix(top.topic.words(result.lda2$topics)) | |
result.lda2$topic_sums | |
result.lda2$document_sums | |
for(i in 1:20){ | |
print(row.names(tdm2[as.numeric(lw2[i,3]),])) # show words in Topic 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment