Created
May 20, 2019 22:53
-
-
Save yunho0130/44d115f31c8e021c152a7d81249e6431 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
##Download CSV file from Kaggle | |
# https://www.kaggle.com/ehallmar/daily-historical-stock-prices-1970-2018#historical_stock_prices.csv | |
##Hurst Exponent | |
simpleHurst <- function(y){ | |
sd.y <- sd(y) | |
m <- mean(y) | |
y <- y - m | |
max.y <- max(cumsum(y)) | |
min.y <- min(cumsum(y)) | |
RS <- (max.y - min.y)/sd.y | |
H <- log(RS) / log(length(y)) | |
return(H) | |
} | |
# X <- read.table("mac_backup/# Ph_d/19-01/파이낸스인텔리전스(IIE7561-01)/week11/Chaos/k200_from_2001.txt") | |
filename = "historical_stock_prices.csv" | |
X <- read.table(paste0("mac_backup/# Ph_d/19-01/파이낸스인텔리전스(IIE7561-01)/week11/daily-historical-stock-prices-1970-2018/",filename), sep = ",", header=TRUE) | |
is.data.frame(X) | |
head(X) | |
X_backup <- X | |
X2 <-subset(X, ticker=="IBM", select = c(date, adj_close)) | |
head(X2) | |
X <- X2 | |
Data <- as.numeric(unlist(X)) | |
simpleHurst(Data) | |
Hurst <- array(dim=c(4000,1)) | |
for(j in 10:4000){ | |
DataVector <- array(dim=c(j,1)) | |
for(i in 1:j){ | |
DataVector[i,1] <- Data[i] | |
} | |
DataVector <- as.numeric(unlist(DataVector)) | |
Hurst[j,1] <- simpleHurst(DataVector) | |
} | |
plot(Hurst) | |
##?ʿ??? ??Ű?? | |
#install.packages("nonlinearTseries") | |
library("nonlinearTseries") | |
##Correlation Dimension | |
emb.dim = estimateEmbeddingDim(Data, number.points = length(Data), time.lag = 1, max.embedding.dim = 15) | |
emb.dim | |
result <- corrDim(Data, min.embedding.dim = emb.dim, max.embedding.dim = emb.dim + 5, min.radius = 1, max.radius = 200, n.points.radius = 40) | |
estimate(result, regression.range = c(1,200), use.embeddings = 9:14) | |
##Maximum Lyapunov Exponent | |
ml=maxLyapunov(time.series=Data, radius = 200, time.lag=1, min.neighs=2, min.embedding.dim=emb.dim, max.embedding.dim=emb.dim+5, min.ref.points=500, max.time.steps=40, theiler.window=4, do.plot=FALSE) | |
ml.estimation = estimate(ml,regression.range = c(1,200),use.embeddings = 9:14,do.plot = FALSE) | |
ml.estimation |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment