Created
October 9, 2016 01:31
-
-
Save yunho0130/fb9f6ea863408b6ff45212bc1cee6ae3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
# 데이터셋 | |
IRIS_TRAINING = "/Users/Yunho/Desktop/iris_data/iris_char_training.csv" | |
IRIS_TEST = "/Users/Yunho/Desktop/iris_data/iris_char_test.csv" | |
# 데이터셋을 불러옵니다. | |
#load_csv_with_header( | |
data_path, | |
target_dtype=np.float, | |
features_dtype=np.float) | |
def load_csv_without_header(filename, | |
target_dtype, | |
features_dtype, | |
target_column=-1): | |
training_set = tf.contrib.learn.datasets.base.load_csv_without_header(filename=IRIS_TRAINING, target_dtype=np.int, features_dtype=np.long) | |
test_set = tf.contrib.learn.datasets.base.load_csv(filename=IRIS_TEST, target_dtype=np.int) | |
x_train, x_test, y_train, y_test = training_set.data, test_set.data, \ | |
training_set.target, test_set.target | |
# 10-20-10의 구조를 갖는 3층 DNN를 만듭니다 | |
classifier = tf.contrib.learn.DNNClassifier(hidden_units=[10, 20, 10], n_classes=3) | |
# 모델을 피팅합니다. | |
classifier.fit(x=x_train, y=y_train, steps=200) | |
# 정확도를 평가합니다. | |
accuracy_score = classifier.evaluate(x=x_test, y=y_test)["accuracy"] | |
print('Accuracy: {0:f}'.format(accuracy_score)) | |
# 새로운 두 꽃의 표본을 분류합니다. | |
new_samples = np.array( | |
[[6.4, 3.2, 4(new_samples) | |
print ('Predictions: {}'.format(str(y))).5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=float) | |
y = classifier.predict | |
# Tensorflow 최신화 | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
import numpy as np | |
# Data sets | |
IRIS_TRAINING = "/development/bigcon/tensor_train.csv" | |
IRIS_TEST = "/development/bigcon/tensor_test.csv" | |
IRIS_NEW_SAMPLE = "/development/bigcon/tensor_evaluation.csv" | |
IRIS_RESULT = "/development/bigcon/tensor_result.txt" | |
# Load datasets. | |
training_set = tf.contrib.learn.datasets.base.load_csv_without_header( | |
filename=IRIS_TRAINING, | |
target_dtype=np.float32, | |
features_dtype=np.int32, | |
target_column=0) | |
test_set = tf.contrib.learn.datasets.base.load_csv_without_header( | |
filename=IRIS_TEST, | |
target_dtype=np.float32, | |
features_dtype=np.int32, | |
target_column=0) | |
# Specify that all features have real-value data | |
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=49)] | |
# Build 3 layer DNN with 10, 20, 10 units respectively. | |
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns, | |
hidden_units=[10, 20, 10], | |
n_classes=2, | |
model_dir="/tmp/tensor_model2") | |
# Fit model. | |
classifier.fit(x=training_set.data, | |
y=training_set.target, | |
steps=2000) | |
# Evaluate accuracy. | |
accuracy_score = classifier.evaluate(x=test_set.data, | |
y=test_set.target)["accuracy"] | |
print('Accuracy: {0:f}'.format(accuracy_score)) | |
# Classify two new flower samples. | |
#new_samples = np.array( | |
# [[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=float) | |
array1 = [3,42,3,1,42,3,30,20,20,2,89800,0,1,20,1,4,0,935,6,6,0,0,0,0,3159,0,3159,1,1686,12,60,20,1,1,1,3,4,2,4,87,133,40,0,612,0,1,0,0,0] | |
new_samples = np.array(array1, dtype=int) | |
y = classifier.predict(new_samples) | |
print('Predictions: {}'.format(str(y))) | |
#from numpy import genfromtxt | |
#new_samples = np.array(genfromtxt(IRIS_NEW_SAMPLE, delimiter=',',dtype=int)) | |
# y = classifier.predict(new_samples) | |
# 출력 | |
f = open(IRIS_RESULT, 'w') | |
f.write(y) | |
f.close() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment