Last active
December 6, 2021 21:07
-
-
Save yusugomori/4428308 to your computer and use it in GitHub Desktop.
Restricted Boltzmann Machine (RBM)
using Contrastive Divergence
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
""" | |
Restricted Boltzmann Machine (RBM) | |
References : | |
- Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise | |
Training of Deep Networks, Advances in Neural Information Processing | |
Systems 19, 2007 | |
- DeepLearningTutorials | |
https://github.com/lisa-lab/DeepLearningTutorials | |
""" | |
import sys | |
import numpy | |
numpy.seterr(all='ignore') | |
def sigmoid(x): | |
return 1. / (1 + numpy.exp(-x)) | |
class RBM(object): | |
def __init__(self, input=None, n_visible=2, n_hidden=3, \ | |
W=None, hbias=None, vbias=None, numpy_rng=None): | |
self.n_visible = n_visible # num of units in visible (input) layer | |
self.n_hidden = n_hidden # num of units in hidden layer | |
if numpy_rng is None: | |
numpy_rng = numpy.random.RandomState(1234) | |
if W is None: | |
a = 1. / n_visible | |
initial_W = numpy.array(numpy_rng.uniform( # initialize W uniformly | |
low=-a, | |
high=a, | |
size=(n_visible, n_hidden))) | |
W = initial_W | |
if hbias is None: | |
hbias = numpy.zeros(n_hidden) # initialize h bias 0 | |
if vbias is None: | |
vbias = numpy.zeros(n_visible) # initialize v bias 0 | |
self.numpy_rng = numpy_rng | |
self.input = input | |
self.W = W | |
self.hbias = hbias | |
self.vbias = vbias | |
# self.params = [self.W, self.hbias, self.vbias] | |
def contrastive_divergence(self, lr=0.1, k=1, input=None): | |
if input is not None: | |
self.input = input | |
''' CD-k ''' | |
ph_mean, ph_sample = self.sample_h_given_v(self.input) | |
chain_start = ph_sample | |
for step in xrange(k): | |
if step == 0: | |
nv_means, nv_samples,\ | |
nh_means, nh_samples = self.gibbs_hvh(chain_start) | |
else: | |
nv_means, nv_samples,\ | |
nh_means, nh_samples = self.gibbs_hvh(nh_samples) | |
# chain_end = nv_samples | |
self.W += lr * (numpy.dot(self.input.T, ph_sample) | |
- numpy.dot(nv_samples.T, nh_means)) | |
self.vbias += lr * numpy.mean(self.input - nv_samples, axis=0) | |
self.hbias += lr * numpy.mean(ph_sample - nh_means, axis=0) | |
# cost = self.get_reconstruction_cross_entropy() | |
# return cost | |
def sample_h_given_v(self, v0_sample): | |
h1_mean = self.propup(v0_sample) | |
h1_sample = self.numpy_rng.binomial(size=h1_mean.shape, # discrete: binomial | |
n=1, | |
p=h1_mean) | |
return [h1_mean, h1_sample] | |
def sample_v_given_h(self, h0_sample): | |
v1_mean = self.propdown(h0_sample) | |
v1_sample = self.numpy_rng.binomial(size=v1_mean.shape, # discrete: binomial | |
n=1, | |
p=v1_mean) | |
return [v1_mean, v1_sample] | |
def propup(self, v): | |
pre_sigmoid_activation = numpy.dot(v, self.W) + self.hbias | |
return sigmoid(pre_sigmoid_activation) | |
def propdown(self, h): | |
pre_sigmoid_activation = numpy.dot(h, self.W.T) + self.vbias | |
return sigmoid(pre_sigmoid_activation) | |
def gibbs_hvh(self, h0_sample): | |
v1_mean, v1_sample = self.sample_v_given_h(h0_sample) | |
h1_mean, h1_sample = self.sample_h_given_v(v1_sample) | |
return [v1_mean, v1_sample, | |
h1_mean, h1_sample] | |
def get_reconstruction_cross_entropy(self): | |
pre_sigmoid_activation_h = numpy.dot(self.input, self.W) + self.hbias | |
sigmoid_activation_h = sigmoid(pre_sigmoid_activation_h) | |
pre_sigmoid_activation_v = numpy.dot(sigmoid_activation_h, self.W.T) + self.vbias | |
sigmoid_activation_v = sigmoid(pre_sigmoid_activation_v) | |
cross_entropy = - numpy.mean( | |
numpy.sum(self.input * numpy.log(sigmoid_activation_v) + | |
(1 - self.input) * numpy.log(1 - sigmoid_activation_v), | |
axis=1)) | |
return cross_entropy | |
def reconstruct(self, v): | |
h = sigmoid(numpy.dot(v, self.W) + self.hbias) | |
reconstructed_v = sigmoid(numpy.dot(h, self.W.T) + self.vbias) | |
return reconstructed_v | |
def test_rbm(learning_rate=0.1, k=1, training_epochs=1000): | |
data = numpy.array([[1,1,1,0,0,0], | |
[1,0,1,0,0,0], | |
[1,1,1,0,0,0], | |
[0,0,1,1,1,0], | |
[0,0,1,1,0,0], | |
[0,0,1,1,1,0]]) | |
rng = numpy.random.RandomState(123) | |
# construct RBM | |
rbm = RBM(input=data, n_visible=6, n_hidden=2, numpy_rng=rng) | |
# train | |
for epoch in xrange(training_epochs): | |
rbm.contrastive_divergence(lr=learning_rate, k=k) | |
cost = rbm.get_reconstruction_cross_entropy() | |
print >> sys.stderr, 'Training epoch %d, cost is ' % epoch, cost | |
# test | |
v = numpy.array([[0, 0, 0, 1, 1, 0], | |
[1, 1, 0, 0, 0, 0]]) | |
print rbm.reconstruct(v) | |
if __name__ == "__main__": | |
test_rbm() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment