Skip to content

Instantly share code, notes, and snippets.

@yusugomori
Last active December 6, 2021 21:07
Show Gist options
  • Save yusugomori/4428308 to your computer and use it in GitHub Desktop.
Save yusugomori/4428308 to your computer and use it in GitHub Desktop.
Restricted Boltzmann Machine (RBM) using Contrastive Divergence
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Restricted Boltzmann Machine (RBM)
References :
- Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise
Training of Deep Networks, Advances in Neural Information Processing
Systems 19, 2007
- DeepLearningTutorials
https://github.com/lisa-lab/DeepLearningTutorials
"""
import sys
import numpy
numpy.seterr(all='ignore')
def sigmoid(x):
return 1. / (1 + numpy.exp(-x))
class RBM(object):
def __init__(self, input=None, n_visible=2, n_hidden=3, \
W=None, hbias=None, vbias=None, numpy_rng=None):
self.n_visible = n_visible # num of units in visible (input) layer
self.n_hidden = n_hidden # num of units in hidden layer
if numpy_rng is None:
numpy_rng = numpy.random.RandomState(1234)
if W is None:
a = 1. / n_visible
initial_W = numpy.array(numpy_rng.uniform( # initialize W uniformly
low=-a,
high=a,
size=(n_visible, n_hidden)))
W = initial_W
if hbias is None:
hbias = numpy.zeros(n_hidden) # initialize h bias 0
if vbias is None:
vbias = numpy.zeros(n_visible) # initialize v bias 0
self.numpy_rng = numpy_rng
self.input = input
self.W = W
self.hbias = hbias
self.vbias = vbias
# self.params = [self.W, self.hbias, self.vbias]
def contrastive_divergence(self, lr=0.1, k=1, input=None):
if input is not None:
self.input = input
''' CD-k '''
ph_mean, ph_sample = self.sample_h_given_v(self.input)
chain_start = ph_sample
for step in xrange(k):
if step == 0:
nv_means, nv_samples,\
nh_means, nh_samples = self.gibbs_hvh(chain_start)
else:
nv_means, nv_samples,\
nh_means, nh_samples = self.gibbs_hvh(nh_samples)
# chain_end = nv_samples
self.W += lr * (numpy.dot(self.input.T, ph_sample)
- numpy.dot(nv_samples.T, nh_means))
self.vbias += lr * numpy.mean(self.input - nv_samples, axis=0)
self.hbias += lr * numpy.mean(ph_sample - nh_means, axis=0)
# cost = self.get_reconstruction_cross_entropy()
# return cost
def sample_h_given_v(self, v0_sample):
h1_mean = self.propup(v0_sample)
h1_sample = self.numpy_rng.binomial(size=h1_mean.shape, # discrete: binomial
n=1,
p=h1_mean)
return [h1_mean, h1_sample]
def sample_v_given_h(self, h0_sample):
v1_mean = self.propdown(h0_sample)
v1_sample = self.numpy_rng.binomial(size=v1_mean.shape, # discrete: binomial
n=1,
p=v1_mean)
return [v1_mean, v1_sample]
def propup(self, v):
pre_sigmoid_activation = numpy.dot(v, self.W) + self.hbias
return sigmoid(pre_sigmoid_activation)
def propdown(self, h):
pre_sigmoid_activation = numpy.dot(h, self.W.T) + self.vbias
return sigmoid(pre_sigmoid_activation)
def gibbs_hvh(self, h0_sample):
v1_mean, v1_sample = self.sample_v_given_h(h0_sample)
h1_mean, h1_sample = self.sample_h_given_v(v1_sample)
return [v1_mean, v1_sample,
h1_mean, h1_sample]
def get_reconstruction_cross_entropy(self):
pre_sigmoid_activation_h = numpy.dot(self.input, self.W) + self.hbias
sigmoid_activation_h = sigmoid(pre_sigmoid_activation_h)
pre_sigmoid_activation_v = numpy.dot(sigmoid_activation_h, self.W.T) + self.vbias
sigmoid_activation_v = sigmoid(pre_sigmoid_activation_v)
cross_entropy = - numpy.mean(
numpy.sum(self.input * numpy.log(sigmoid_activation_v) +
(1 - self.input) * numpy.log(1 - sigmoid_activation_v),
axis=1))
return cross_entropy
def reconstruct(self, v):
h = sigmoid(numpy.dot(v, self.W) + self.hbias)
reconstructed_v = sigmoid(numpy.dot(h, self.W.T) + self.vbias)
return reconstructed_v
def test_rbm(learning_rate=0.1, k=1, training_epochs=1000):
data = numpy.array([[1,1,1,0,0,0],
[1,0,1,0,0,0],
[1,1,1,0,0,0],
[0,0,1,1,1,0],
[0,0,1,1,0,0],
[0,0,1,1,1,0]])
rng = numpy.random.RandomState(123)
# construct RBM
rbm = RBM(input=data, n_visible=6, n_hidden=2, numpy_rng=rng)
# train
for epoch in xrange(training_epochs):
rbm.contrastive_divergence(lr=learning_rate, k=k)
cost = rbm.get_reconstruction_cross_entropy()
print >> sys.stderr, 'Training epoch %d, cost is ' % epoch, cost
# test
v = numpy.array([[0, 0, 0, 1, 1, 0],
[1, 1, 0, 0, 0, 0]])
print rbm.reconstruct(v)
if __name__ == "__main__":
test_rbm()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment