Created
May 24, 2013 14:43
-
-
Save yutopio/5644022 to your computer and use it in GitHub Desktop.
Enumerates some pseudoprimes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using System; | |
using System.IO; | |
unsafe class Program | |
{ | |
const int size = 1000000000; | |
static bool[] sieve = null; | |
static void Main() | |
{ | |
var start = DateTime.Now; | |
CreateSieve(); | |
var end = DateTime.Now; | |
Console.WriteLine("Sieve creation: {0}", end - start); | |
for (ulong i = 0; i < 100; i++) | |
{ | |
var j = 0; | |
for (ulong k = i * 10000000 + 1; j < 5000000; j++, k += 2) | |
// if (!IsPrime(k) && MillarRabin(k)) | |
if (!sieve[k] && MillarRabin(k)) | |
Console.WriteLine(k); | |
} | |
} | |
static void CreateSieve() | |
{ | |
sieve = new bool[size]; | |
fixed (bool* pt = sieve) | |
{ | |
ulong* init = (ulong*)pt; | |
init[0] = 0x0100010001010000; | |
for (int i = 1; i < size / 8; i++) | |
init[i] = 0x0100010001000100; | |
int upper = (int)Math.Ceiling(Math.Sqrt(size)); | |
if (upper % 2 == 1) upper++; | |
for (int i = 3; i < upper; i++) | |
if (pt[i]) | |
for (int j = i * i; j < size; j += i) | |
pt[j] = false; | |
} | |
} | |
/* static bool IsPrime(ulong n) | |
{ | |
if (n < 2) return false; | |
else if (n == 2) return true; | |
else if ((n & 1) == 0) return false; | |
var j = (ulong)Math.Sqrt(n); | |
for (ulong i = 3; i <= j; i += 2) | |
if (n % i == 0) return false; | |
return true; | |
} | |
*/ | |
static bool MillarRabin(ulong n) | |
{ | |
if (n < 2) return false; | |
else if (n == 2) return true; | |
else if ((n & 1) == 0) return false; | |
var oddPower = n - 1; | |
while ((oddPower & 1) == 0) oddPower >>= 1; | |
foreach (var @base in new ulong[] { 2, 3, 5, 13 }) | |
{ | |
var power = oddPower; | |
var temp = PowMod(@base, power, n); | |
if (temp == 1) continue; | |
while (power != n - 1 && temp != n - 1) | |
{ | |
temp = (temp * temp) % n; | |
power <<= 1; | |
} | |
if (power == n - 1) return false; | |
} | |
return true; | |
} | |
static ulong PowMod(ulong @base, ulong power, ulong modulo) | |
{ | |
ulong ret = 1; | |
@base %= modulo; | |
while (power != 0) | |
{ | |
if ((power & 1) == 1) ret = (ret * @base) % modulo; | |
@base = (@base * @base) % modulo; | |
power >>= 1; | |
} | |
return ret; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment