Last active
September 13, 2019 08:26
-
-
Save yuyasugano/57aac03d91e83c88955847e7f10a54ab to your computer and use it in GitHub Desktop.
Scikit-learn for OHLC data sample with bitbank.cc API
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing import StandardScaler | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score, f1_score | |
X_train, X_test, y_train, y_test = train_test_split(X_, y_, test_size=0.33, random_state=42) | |
print('X_train shape: {}'.format(X_train.shape)) | |
print('X_test shape: {}'.format(X_test.shape)) | |
print('y_train shape: {}'.format(y_train.shape)) | |
print('y_test shape: {}'.format(y_test.shape)) | |
pipe_knn = Pipeline([('scl', StandardScaler()), ('est', KNeighborsClassifier(n_neighbors=3))]) | |
pipe_logistic = Pipeline([('scl', StandardScaler()), ('est', LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=39))]) | |
pipe_rf = Pipeline([('scl', StandardScaler()), ('est', RandomForestClassifier(random_state=39))]) | |
pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) | |
pipe_names = ['KNN','Logistic','RandomForest','GradientBoosting'] | |
pipe_lines = [pipe_knn, pipe_logistic, pipe_rf, pipe_gb] | |
for (i, pipe) in enumerate(pipe_lines): | |
pipe.fit(X_train, y_train.values.ravel()) | |
print('%s: %.3f' % (pipe_names[i] + ' Train Accuracy', accuracy_score(y_train.values.ravel(), pipe.predict(X_train)))) | |
print('%s: %.3f' % (pipe_names[i] + ' Test Accuracy', accuracy_score(y_test.values.ravel(), pipe.predict(X_test)))) | |
print('%s: %.3f' % (pipe_names[i] + ' Train F1 Score', f1_score(y_train.values.ravel(), pipe.predict(X_train), average='weighted'))) | |
print('%s: %.3f' % (pipe_names[i] + ' Test F1 Score', f1_score(y_test.values.ravel(), pipe.predict(X_test), average='weighted'))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment