Created
November 3, 2019 03:20
-
-
Save yuyasugano/9df5afa94fea7e1cac308c9d91aaf33e to your computer and use it in GitHub Desktop.
Nested Cross validation GridSearch CV
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.datasets import load_iris | |
from sklearn.model_selection import ParameterGrid, StratifiedKFold | |
iris = load_iris() | |
param_grid = [{'kernel': ['rbf'], | |
'C': [0.01, 1], | |
'gamma': [0.1, 1]}, | |
{'kernel': ['linear'], | |
'C': [0.01, 1]}] | |
print("List of parameter grids:\n{}".format(param_grid)) | |
def nested_cv(X, y, inner_cv, outer_cv, Classifier, parameter_grid): | |
outer_scores = [] | |
for training_samples, test_samples in outer_cv.split(X, y): | |
best_params = {} | |
best_score = -np.inf | |
for parameters in parameter_grid: | |
cv_scores = [] | |
for inner_train, inner_test in inner_cv.split(X[training_samples], y[training_samples]): | |
inner_clf = Classifier(**parameters) | |
inner_clf.fit(X[inner_train], y[inner_train]) | |
inner_score = inner_clf.score(X[inner_test], y[inner_test]) | |
cv_scores.append(inner_score) | |
mean_score = np.mean(cv_scores) | |
if mean_score > best_score: | |
best_score = mean_score | |
best_params = parameters | |
outer_clf = Classifier(**best_params) | |
outer_clf.fit(X[training_samples], y[training_samples]) | |
outer_score = outer_clf.score(X[test_samples], y[test_samples]) | |
outer_scores.append(outer_score) | |
return np.array(outer_scores) | |
scores = nested_cv(iris.data, iris.target, StratifiedKFold(5), StratifiedKFold(5), SVC, ParameterGrid(param_grid)) | |
print('Cross validation scores: {}'.format(scores)) | |
print('Cross validation mean: {}'.format(scores.mean())) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment