Created
November 17, 2019 05:48
-
-
Save yuyasugano/de1a3287ffa19ba383cfbcf538b25de8 to your computer and use it in GitHub Desktop.
SageMaker sklearn-container example for training
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# S3 prefix | |
prefix = 'sagemaker/scikit-iris' | |
import sagemaker | |
from sagemaker import get_execution_role | |
sagemaker_session = sagemaker.Session() | |
# Get a SageMaker-compatible role used by this Notebook Instance. | |
role = get_execution_role() | |
import numpy as np | |
import os | |
from sklearn import datasets | |
# Load Iris dataset, then join labels and features | |
iris = datasets.load_iris() | |
joined_iris = np.insert(iris.data, 0, iris.target, axis=1) | |
# Create directory and write csv | |
os.makedirs('./data', exist_ok=True) | |
np.savetxt('./data/iris.csv', joined_iris, delimiter=',', fmt='%1.1f, %1.3f, %1.3f, %1.3f, %1.3f') | |
WORK_DIRECTORY = 'data' | |
train_input = sagemaker_session.upload_data(WORK_DIRECTORY, key_prefix="{}/{}".format(prefix, WORK_DIRECTORY)) | |
account = sagemaker_session.boto_session.client('sts').get_caller_identity()['Account'] | |
region = sagemaker_session.boto_session.region_name | |
image_full = '{}.dkr.ecr.{}.amazonaws.com/sklearn-container:latest'.format(account, region) | |
clf = sagemaker.estimator.Estimator(image_full, role, 1, 'ml.c4.2xlarge', | |
output_path="s3://{}/output".format(sagemaker_session.default_bucket()), | |
sagemaker_session=sagemaker_session) | |
# training with the gradient boosting classifier model | |
clf.fit(train_input) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment