Created
October 30, 2019 12:27
-
-
Save yuyasugano/f492a8e095e4f7a08d07da508c1a8464 to your computer and use it in GitHub Desktop.
Recursive Feature Elimination
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Recursive Feature Elimination | |
from sklearn.feature_selection import RFE | |
select = RFE(RandomForestClassifier(n_estimators=100, random_state=42), | |
n_features_to_select=15) | |
select.fit(X_train_full, y_train_full.values.ravel()) | |
X_train_rfe = select.transform(X_train_full) | |
X_test_rfe = select.transform(X_test_full) | |
mask = select.get_support() | |
print(mask) | |
plt.matshow(mask.reshape(1, -1), cmap='gray_r') | |
plt.xlabel("Technical Indexes") | |
# GradientBoost Classifier | |
print('--------------------------Without Recursive Feature Elimination-------------------------------------') | |
pipe_gb = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) | |
pipe_gb.fit(X_train_full, y_train_full.values.ravel()) | |
print('Train Accuracy: {:.3f}'.format(accuracy_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full)))) | |
print('Test Accuracy: {:.3f}'.format(accuracy_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full)))) | |
print('Train F1 Score: {:.3f}'.format(f1_score(y_train_full.values.ravel(), pipe_gb.predict(X_train_full), average='micro'))) | |
print('Test F1 Score: {:.3f}'.format(f1_score(y_test_full.values.ravel(), pipe_gb.predict(X_test_full), average='micro'))) | |
# GradientBoost Classifier with Recursive Feature Elimination | |
print('----------------------------With Recursive Feature Elimination--------------------------------------') | |
pipe_gb_rfe = Pipeline([('scl', StandardScaler()), ('est', GradientBoostingClassifier(random_state=39))]) | |
pipe_gb_rfe.fit(X_train_rfe, y_train_full.values.ravel()) | |
print('Train Accuracy: {:.3f}'.format(accuracy_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe)))) | |
print('Test Accuracy: {:.3f}'.format(accuracy_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe)))) | |
print('Train F1 Score: {:.3f}'.format(f1_score(y_train_full.values.ravel(), pipe_gb_rfe.predict(X_train_rfe), average='micro'))) | |
print('Test F1 Score: {:.3f}'.format(f1_score(y_test_full.values.ravel(), pipe_gb_rfe.predict(X_test_rfe), average='micro'))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment