Created
June 19, 2024 16:05
-
-
Save yuzu-original/c599273872ee251b0baa3082b5fbb1c5 to your computer and use it in GitHub Desktop.
A quickly made implementation of the Genetic Algorithm in python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
def generate_random_gens(n: int, size: int, items_count: int) -> list[set[int]]: | |
res = [] | |
v = list(range(items_count)) | |
for _ in range(n): | |
random.shuffle(v) | |
res.append(set(v[:size])) | |
return res | |
def cross(gen1: set[int], gen2: set[int]) -> set[int]: | |
return set(random.sample(tuple(gen1 | gen2), len(gen1))) | |
def mutate(gen: set[int], items_count: int, chance: float) -> None: | |
can_use = list(set(range(items_count)).difference(gen)) | |
for v in set(gen): | |
if random.uniform(0, 1) <= chance: | |
gen.remove(v) | |
can_use.append(v) | |
new = random.choice(can_use) | |
can_use.remove(new) | |
gen.add(new) | |
def evolve(gens: list[set[int]], items: list[int], nice_res: int) -> None: | |
# Selection and crossover | |
selected_count = len(gens) // 2 | |
gens.sort(key=lambda x: abs(nice_res - sum(map(lambda y: items[y], x)))) | |
for i in range(selected_count, len(gens)): | |
gens[i] = cross(gens[random.randint(0, selected_count - 1)], | |
gens[random.randint(0, selected_count - 1)]) | |
# Mutation | |
for i in range(len(gens)): | |
mutate(gens[i], len(items), 0.1) | |
def main(): | |
items = [5, 1, 10, 20, 5, 30, 2, 5, 1, 1] | |
nice = 13 | |
c = len(items) | |
gens_count = 8 | |
gen_size = 5 | |
gens = generate_random_gens(gens_count, gen_size, c) | |
for _ in range(10): | |
evolve(gens, items, nice) | |
print(*(sum(map(lambda x: items[x], inds)) for inds in gens)) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment