Last active
February 20, 2019 12:54
-
-
Save yzh119/7c574606b8795369242ba2679cd2fa97 to your computer and use it in GitHub Desktop.
DGL implementation of Simplified Graph Convolution
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
This code was modified from the GCN implementation in DGL examples. | |
Simplifying Graph Convolutional Networks | |
Paper: https://arxiv.org/abs/1902.07153 | |
Code: https://github.com/Tiiiger/SGC | |
SGC implementation in DGL. | |
""" | |
import argparse, time, math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import dgl.function as fn | |
from dgl import DGLGraph | |
from dgl.data import register_data_args, load_data | |
class SGCLayer(nn.Module): | |
def __init__(self, | |
g, | |
in_feats, | |
out_feats, | |
K=2): | |
super(SGCLayer, self).__init__() | |
self.g = g | |
self.weight = nn.Parameter(torch.Tensor(in_feats, out_feats)) | |
self.K = K | |
self.reset_parameters() | |
def reset_parameters(self): | |
stdv = 1. / math.sqrt(self.weight.size(1)) | |
self.weight.data.uniform_(-stdv, stdv) | |
def forward(self, h): | |
h = torch.mm(h, self.weight) | |
for _ in range(self.K): | |
# normalization by square root of src degree | |
h = h * self.g.ndata['norm'] | |
self.g.ndata['h'] = h | |
self.g.update_all(fn.copy_src(src='h', out='m'), | |
fn.sum(msg='m', out='h')) | |
h = self.g.ndata.pop('h') | |
# normalization by square root of dst degree | |
h = h * self.g.ndata['norm'] | |
return h | |
def evaluate(model, features, labels, mask): | |
model.eval() | |
with torch.no_grad(): | |
logits = model(features) | |
logits = logits[mask] | |
labels = labels[mask] | |
_, indices = torch.max(logits, dim=1) | |
correct = torch.sum(indices == labels) | |
return correct.item() * 1.0 / len(labels) | |
def main(args): | |
# load and preprocess dataset | |
data = load_data(args) | |
features = torch.FloatTensor(data.features) | |
labels = torch.LongTensor(data.labels) | |
train_mask = torch.ByteTensor(data.train_mask) | |
val_mask = torch.ByteTensor(data.val_mask) | |
test_mask = torch.ByteTensor(data.test_mask) | |
in_feats = features.shape[1] | |
n_classes = data.num_labels | |
n_edges = data.graph.number_of_edges() | |
print("""----Data statistics------' | |
#Edges %d | |
#Classes %d | |
#Train samples %d | |
#Val samples %d | |
#Test samples %d""" % | |
(n_edges, n_classes, | |
train_mask.sum().item(), | |
val_mask.sum().item(), | |
test_mask.sum().item())) | |
if args.gpu < 0: | |
cuda = False | |
else: | |
cuda = True | |
torch.cuda.set_device(args.gpu) | |
features = features.cuda() | |
labels = labels.cuda() | |
train_mask = train_mask.cuda() | |
val_mask = val_mask.cuda() | |
test_mask = test_mask.cuda() | |
# graph preprocess and calculate normalization factor | |
g = DGLGraph(data.graph) | |
n_edges = g.number_of_edges() | |
# add self loop | |
g.add_edges(g.nodes(), g.nodes()) | |
# normalization | |
degs = g.in_degrees().float() | |
norm = torch.pow(degs, -0.5) | |
norm[torch.isinf(norm)] = 0 | |
if cuda: | |
norm = norm.cuda() | |
g.ndata['norm'] = norm.unsqueeze(1) | |
# create SGC model | |
model = SGCLayer(g, | |
in_feats, | |
n_classes, | |
K=2) | |
if cuda: | |
model.cuda() | |
loss_fcn = torch.nn.CrossEntropyLoss() | |
# use optimizer | |
optimizer = torch.optim.Adam(model.parameters(), | |
lr=args.lr, | |
weight_decay=args.weight_decay) | |
# initialize graph | |
dur = [] | |
for epoch in range(args.n_epochs): | |
model.train() | |
if epoch >= 3: | |
t0 = time.time() | |
# forward | |
logits = model(features) | |
loss = loss_fcn(logits[train_mask], labels[train_mask]) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
if epoch >= 3: | |
dur.append(time.time() - t0) | |
acc = evaluate(model, features, labels, val_mask) | |
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " | |
"ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(), | |
acc, n_edges / np.mean(dur) / 1000)) | |
print() | |
acc = evaluate(model, features, labels, test_mask) | |
print("Test Accuracy {:.4f}".format(acc)) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='SGC') | |
register_data_args(parser) | |
parser.add_argument("--gpu", type=int, default=-1, | |
help="gpu") | |
parser.add_argument("--lr", type=float, default=0.2, | |
help="learning rate") | |
parser.add_argument("--n-epochs", type=int, default=100, | |
help="number of training epochs") | |
parser.add_argument("--weight-decay", type=float, default=5e-6, | |
help="Weight for L2 loss") | |
args = parser.parse_args() | |
print(args) | |
main(args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment