Created
March 1, 2024 09:04
-
-
Save yzhangcs/35b58ae112b5830b932b4b729eababc2 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import torch | |
import triton | |
import triton.language as tl | |
@triton.jit | |
def cumsum_matmul_kernel( | |
s, | |
z, | |
s_s_h, | |
s_s_t, | |
s_s_d, | |
T: tl.constexpr, | |
S: tl.constexpr, | |
BT: tl.constexpr, | |
BS: tl.constexpr, | |
): | |
i_s, i_bh = tl.program_id(0), tl.program_id(1) | |
o_i = tl.arange(0, BT) | |
m_s = tl.where(o_i[:, None] >= o_i[None, :], 1., 0.) | |
b_z = tl.zeros([BS], dtype=tl.float32) | |
for i_t in range(tl.cdiv(T, BT)): | |
p_s = tl.make_block_ptr(s + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) | |
p_z = tl.make_block_ptr(z + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) | |
# [BT, BS] | |
b_s = tl.load(p_s, boundary_check=(0, 1)) | |
# do cumsum by tensor cores | |
b_sc = b_z[None, :] + tl.dot(m_s.to(b_s.dtype), b_s, allow_tf32=False) | |
tl.store(p_z, b_sc.to(p_z.dtype.element_ty), boundary_check=(0, 1)) | |
b_z = b_z + tl.sum(b_s, 0) | |
@triton.jit | |
def cumsum_triton_kernel( | |
s, | |
z, | |
s_s_h, | |
s_s_t, | |
s_s_d, | |
T: tl.constexpr, | |
S: tl.constexpr, | |
BT: tl.constexpr, | |
BS: tl.constexpr, | |
): | |
i_s, i_bh = tl.program_id(0), tl.program_id(1) | |
b_z = tl.zeros([BS], dtype=tl.float32) | |
for i_t in range(tl.cdiv(T, BT)): | |
p_s = tl.make_block_ptr(s + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) | |
p_z = tl.make_block_ptr(z + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) | |
# [BT, BS] | |
b_s = tl.load(p_s, boundary_check=(0, 1)) | |
b_sc = b_z[None, :] + tl.cumsum(b_s, 0) | |
tl.store(p_z, b_sc.to(p_z.dtype.element_ty), boundary_check=(0, 1)) | |
b_z = b_z + tl.sum(b_s, 0) | |
def cumsum_torch(s): | |
return s.float().cumsum(2).to(s.dtype) | |
def cumsum_triton(s): | |
B, H, T, S = s.shape | |
BT, BS = 64, 64 | |
NS = triton.cdiv(S, BS) | |
grid = (NS, B * H) | |
z = torch.empty_like(s) | |
cumsum_triton_kernel[grid]( | |
s, z, | |
s.stride(1), s.stride(2), s.stride(3), | |
T=T, S=S, BT=BT, BS=BS, | |
num_warps=2, | |
num_stages=1 | |
) | |
return z | |
def cumsum_matmul(s): | |
B, H, T, S = s.shape | |
BT, BS = 64, 64 | |
NS = triton.cdiv(S, BS) | |
grid = (NS, B * H) | |
z = torch.empty_like(s) | |
cumsum_matmul_kernel[grid]( | |
s, z, | |
s.stride(1), s.stride(2), s.stride(3), | |
T=T, S=S, BT=BT, BS=BS, | |
num_warps=1, | |
num_stages=1 | |
) | |
return z | |
B, H, T, D = 8, 4, 2048, 256 | |
dtype = torch.float | |
device = 'cuda' | |
s = torch.randn(B, H, T, D, device=device, dtype=dtype) | |
print("DIFF\t") | |
print('triton\t', f"{(cumsum_torch(s) - cumsum_triton(s)).abs().max():>10.6f}") | |
print('matmul\t', f"{(cumsum_torch(s) - cumsum_matmul(s)).abs().max():>10.6f}") | |
print('Done!') | |
@triton.testing.perf_report( | |
triton.testing.Benchmark( | |
# argument names to use as an x-axis for the plot | |
x_names=['seq_len'], | |
# different possible values for `x_name` | |
x_vals=[128 * 2 ** i for i in range(0, 8)], | |
# argument name whose value corresponds to a different line in the plot | |
line_arg='provider', | |
# possible values for `line_arg`` | |
line_vals=['torch', 'matmul', 'triton'], | |
# label name for the lines | |
line_names=['torch', 'matmul', 'triton'], | |
# line styles | |
styles=[('green', '-'), ('blue', '--'), ('red', '-.')], | |
ylabel="Execution Time (ms)", # label name for the y-axis | |
# name for the plot. Used also as a file name for saving the plot. | |
plot_name="Performance", | |
args={}, | |
) | |
) | |
def benchmark(seq_len, provider): | |
device = 'cuda' | |
dtype = torch.bfloat16 | |
s = torch.randn(B, H, seq_len, D, device=device, dtype=dtype) | |
quantiles = [0.5, 0.2, 0.8] | |
results = 0, 0, 0 | |
if provider == 'torch': | |
results = triton.testing.do_bench(lambda: cumsum_torch(s), quantiles=quantiles) | |
elif provider == 'matmul': | |
results = triton.testing.do_bench(lambda: cumsum_matmul(s), quantiles=quantiles) | |
elif provider == 'triton': | |
results = triton.testing.do_bench(lambda: cumsum_triton(s), quantiles=quantiles) | |
return results | |
benchmark.run(print_data=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment