Created
July 7, 2020 14:21
-
-
Save yzhangcs/c9816c6be87c612943fe064608cbef9b to your computer and use it in GitHub Desktop.
Graph Attention Networks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import torch | |
import torch.nn as nn | |
class GAT(nn.Module): | |
def __init__(self, n_input, n_inner, n_layers, alpha=0.1, dropout=0.5): | |
super(GAT, self).__init__() | |
self.n_input = n_input | |
self.n_inner = n_inner | |
self.n_layers = n_layers | |
self.alpha = alpha | |
self.dropout = dropout | |
self.layers = nn.ModuleList([GATLayer(n_input, n_inner, | |
alpha, dropout) | |
for _ in range(n_layers)]) | |
def __repr__(self): | |
s = self.__class__.__name__ + '(' | |
s += f"n_input={self.n_input}, " | |
s += f"n_inner={self.n_inner}, " | |
s += f"n_layers={self.n_layers}, " | |
s += f"alpha={self.alpha}, " | |
s += f"dropout={self.dropout}" | |
s += ')' | |
return s | |
def forward(self, x, mask): | |
for layer in self.layers: | |
x = layer(x, mask) | |
return x | |
class GATLayer(nn.Module): | |
def __init__(self, n_input, n_inner, alpha=0.1, dropout=0.5): | |
super(GATLayer, self).__init__() | |
self.n_input = n_input | |
self.n_inner = n_inner | |
self.alpha = alpha | |
self.w = nn.Linear(n_input, n_inner, False) | |
# for self | |
self.a1 = nn.Linear(n_inner, 1, False) | |
# for neighbours | |
self.a2 = nn.Linear(n_inner, 1, False) | |
self.leaky_relu = nn.LeakyReLU(self.alpha) | |
self.elu = nn.ELU() | |
self.dropout = nn.Dropout(dropout) | |
def __repr__(self): | |
s = self.__class__.__name__ + '(' | |
s += f"n_input={self.n_input}, " | |
s += f"n_inner={self.n_inner}, " | |
s += f"alpha={self.alpha}, " | |
s += f"dropout={self.dropout.p}" | |
s += ')' | |
return s | |
def reset_parameters(self): | |
nn.init.xavier_uniform_(self.w.weight) | |
nn.init.xavier_uniform_(self.a1.weight) | |
nn.init.xavier_uniform_(self.a2.weight) | |
def forward(self, x, mask): | |
batch_size, seq_len, n_input = x.shape | |
# [batch_size, seq_len, n_inner] | |
h = self.w(x) | |
# [batch_size, seq_len, seq_len] | |
e = self.leaky_relu(self.a1(h) + self.a2(h).transpose(-1, -2)) | |
e = e.masked_fill_(~mask, torch.finfo(torch.float).min) | |
# [batch_size, seq_len, seq_len] | |
attn = self.dropout(e.softmax(-1)) | |
# [batch_size, seq_len, n_input] | |
h = torch.einsum('btt,bth->bth', attn, x) | |
return self.elu(h) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment