Last active
November 30, 2019 10:33
-
-
Save yzhangcs/de4fccb70ebf69719f06abb2b4511d35 to your computer and use it in GitHub Desktop.
Script used for outputting some metrics w.r.t. the predicted results.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import argparse | |
import os | |
import unicodedata | |
import torch | |
def ispunct(token): | |
return all(unicodedata.category(char).startswith('P') | |
for char in token) | |
def isprojective(sequence): | |
sequence = [0] + list(sequence) | |
arcs = [(h, d) for d, h in enumerate(sequence[1:], 1) if h >= 0] | |
for i, (hi, di) in enumerate(arcs): | |
for hj, dj in arcs[i+1:]: | |
(li, ri), (lj, rj) = sorted([hi, di]), sorted([hj, dj]) | |
if (li <= hj <= ri and hi == dj) or (lj <= hi <= rj and hj == di): | |
return False | |
if (li < lj < ri or li < rj < ri) and (li - lj) * (ri - rj) > 0: | |
return False | |
return True | |
def numericalize_arcs(sequence): | |
return [int(i) for i in sequence] | |
def numericalize_sibs(sequence): | |
sibs = [-1] * (len(sequence) + 1) | |
heads = [0] + [int(i) for i in sequence] | |
for i in range(1, len(heads)): | |
hi = heads[i] | |
for j in range(i + 1, len(heads)): | |
hj = heads[j] | |
di, dj = hi - i, hj - j | |
if hi >= 0 and hj >= 0 and hi == hj and di * dj > 0: | |
if abs(di) > abs(dj): | |
sibs[i] = j | |
else: | |
sibs[j] = i | |
break | |
return sibs[1:] | |
def numericalize_grds(sequence): | |
grds = [-1] * (len(sequence) + 1) | |
heads = [len(sequence) + 1] + [int(i) for i in sequence] | |
for i in range(1, len(heads)): | |
hi = heads[i] | |
if hi >= 0: | |
grds[i] = heads[hi] | |
return grds[1:] | |
def read(path): | |
start, words, arcs, rels, = 0, [], [], [] | |
with open(path, 'r') as f: | |
lines = [line.strip() for line in f] | |
for i, line in enumerate(lines): | |
if not line: | |
values = list(zip(*[l.split() for l in lines[start:i]])) | |
words.append(list(values[1])) | |
arcs.append([int(i) for i in values[6]]) | |
rels.append(list(values[7])) | |
start = i + 1 | |
return words, arcs, rels | |
def evaluate(fgold, fpred, evalb=False, punct=False, proj=False): | |
words, gold_arcs, gold_rels, = read(fgold) | |
_, pred_arcs, pred_rels = read(fpred) | |
sib_tp, sib_golds, sib_preds = 0, 0, 0 | |
grd_tp, grd_golds, grd_preds = 0, 0, 0 | |
n, n_ucm, n_lcm, c_arcs, c_rels, total = 0, 0, 0, 0, 0, 0 | |
evallines = [] | |
for sent_id, (w_seq, g_arc, p_arc, g_rel, p_rel) in \ | |
enumerate(zip(words, gold_arcs, pred_arcs, gold_rels, pred_rels)): | |
if proj and not isprojective([int(i) for i in g_arc]): | |
continue | |
mask = torch.tensor([g >= 0 for g in g_arc]) | |
if not punct: | |
mask &= torch.tensor([not ispunct(w) for w in w_seq]) | |
if not mask.any(): | |
continue | |
arc_mask = torch.tensor([g == p for g, p in zip(g_arc, p_arc)]) & mask | |
rel_mask = torch.tensor([g == p for g, p in zip(g_rel, p_rel)]) | |
rel_mask = rel_mask & arc_mask | |
c_arc = arc_mask.sum().item() | |
c_rel = rel_mask.sum().item() | |
c_total = mask.sum().item() | |
mask = mask.tolist() | |
g_sib, p_sib = numericalize_sibs(g_arc), numericalize_sibs(p_arc) | |
g_grd, p_grd = numericalize_grds(g_arc), numericalize_grds(p_arc) | |
g_arc_sib = {(i, a, s) for i, (a, s) in enumerate(zip(g_arc, g_sib)) | |
if s > 0 and mask[i]} | |
p_arc_sib = {(i, a, s) for i, (a, s) in enumerate(zip(p_arc, p_sib)) | |
if s > 0 and mask[i]} | |
sib_tp += len(g_arc_sib & p_arc_sib) | |
sib_golds += len(g_arc_sib) | |
sib_preds += len(p_arc_sib) | |
g_arc_grd = {(i, a, s) for i, (a, s) in enumerate(zip(g_arc, g_grd)) | |
if mask[i]} | |
p_arc_grd = {(i, a, s) for i, (a, s) in enumerate(zip(p_arc, p_grd)) | |
if mask[i]} | |
grd_tp += len(g_arc_grd & p_arc_grd) | |
grd_golds += len(g_arc_grd) | |
grd_preds += len(p_arc_grd) | |
n += 1 | |
n_ucm += c_arc == c_total | |
n_lcm += c_rel == c_total | |
c_arcs += c_arc | |
c_rels += c_rel | |
total += c_total | |
# Sent. Attachment Correct Scoring | |
# ID Tokens - Unlab. Lab. HEAD HEAD+DEPREL tokens - - - - | |
# only considers the LAS here | |
evallines.append(f" {sent_id+1:4d} {len(mask):4d} 0" | |
f" {c_rel/c_total*100:6.2f} {c_rel/c_total*100:6.2f}" | |
f" {c_arc:4d} {c_rel:4d} " | |
f" {c_total:4d} 0 0 0 0\n") | |
print(f"SIB:\n" | |
f" P: {sib_tp:5} / {sib_preds:5} = {sib_tp/sib_preds:6.2%}\n" | |
f" R: {sib_tp:5} / {sib_golds:5} = {sib_tp/sib_golds:6.2%}\n" | |
f" F: 2*P*R / (P+R) = {2*sib_tp/(sib_preds+sib_golds):6.2%}\n" | |
f"GRD:\n" | |
f" P: {grd_tp:5} / {grd_preds:5} = {grd_tp/grd_preds:6.2%}\n" | |
f"UCM: {n_ucm:5} / {n:5} = {n_ucm/n:6.2%}\n" | |
f"LCM: {n_lcm:5} / {n:5} = {n_lcm/n:6.2%}\n" | |
f"UAS: {c_arcs:5} / {total:5} = {c_arcs/total:6.2%}\n" | |
f"LAS: {c_rels:5} / {total:5} = {c_rels/total:6.2%}\n") | |
if evalb: | |
print(os.path.splitext(fpred)[0]+'.evalb') | |
with open(os.path.splitext(fpred)[0]+'.evalb', 'w') as f: | |
f.writelines(evallines) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser( | |
description='Output some metrics w.r.t. the predicted results.' | |
) | |
parser.add_argument('--fgold', '-g', help='path to gold dataset') | |
parser.add_argument('--fpred', '-s', help='path to predicted result') | |
parser.add_argument('--evalb', '-b', action='store_true', | |
help='produce output in a format similar to evalb') | |
parser.add_argument('--punct', '-p', action='store_true', | |
help='also score on punctuation') | |
parser.add_argument('--proj', action='store_true', | |
help='whether to projectivise the data') | |
args = parser.parse_args() | |
evaluate(args.fgold, args.fpred, args.evalb, args.punct, args.proj) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment