Skip to content

Instantly share code, notes, and snippets.

@yzhliu
Created January 5, 2018 18:46
Show Gist options
  • Save yzhliu/57860abcf553522b894505b7f8a3ba2b to your computer and use it in GitHub Desktop.
Save yzhliu/57860abcf553522b894505b7f8a3ba2b to your computer and use it in GitHub Desktop.
The simplest version to do conv2d on skylake
import numpy as np
import tvm
import topi
from tvm.contrib.pickle_memoize import memoize
from topi.util import get_const_tuple
from topi import tag
def schedule_conv2d(outs):
print('Run in x86 sch ...')
"""Create schedule for tensors"""
s = tvm.create_schedule([x.op for x in outs])
def traverse(op):
"""Traverse operators from computation graph"""
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(op.tag):
if op not in s.outputs:
s[op].compute_inline()
for tensor in op.input_tensors:
if tensor.op.input_tensors:
traverse(tensor.op)
if 'conv2d_nchw' in op.tag:
conv = op.output(0)
kernel = op.input_tensors[1]
data = op.input_tensors[0]
data_pad = None
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag:
data_pad = data
data = data_pad.op.input_tensors[0]
C = conv
print(C.op.axis)
print(C.op.reduce_axis)
print(data_pad.op.axis)
n, c, h, w = C.op.axis
rc, ry, rx = C.op.reduce_axis
s[C].reorder(n, c, rc, h, w, ry, rx)
r = s[C].fuse(ry, rx)
s[C].unroll(r)
xo, xi = s[C].split(w, factor=8)
s[C].parallel(c)
s[C].vectorize(xi)
s[C].pragma(n, "parallel_launch_point")
traverse(outs[0].op)
return s
def verify_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, padding):
in_height = in_width = in_size
def check_device():
# print("Running on target: %s" % device)
# device = 'llvm -mcpu=core-avx2'
device = 'llvm -mcpu=skylake-avx512'
# device = 'llvm -mattr=+avx2'
# device = 'llvm'
A = tvm.placeholder((batch, in_channel, in_height, in_width), name='A')
W = tvm.placeholder((num_filter, in_channel, kernel, kernel), name='W')
B = topi.nn.conv2d(A, W, stride, padding)
s = schedule_conv2d([B])
print(tvm.lower(s, [A, W, B], simple_mode=True))
a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
dtype = A.dtype
@memoize("topi.tests.test_topi_conv2d.verify_con2d_nchw")
def get_ref_data():
a_np = np.random.uniform(size=a_shape).astype(dtype)
w_np = np.random.uniform(size=w_shape).astype(dtype)
b_np = topi.testing.conv2d_nchw_python(a_np, w_np, stride, padding)
c_np = np.maximum(b_np, 0)
return a_np, w_np, b_np, c_np
a_np, w_np, b_np, c_np = get_ref_data()
ctx = tvm.context(device, 0)
a = tvm.nd.array(a_np, ctx)
w = tvm.nd.array(w_np, ctx)
b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx)
with tvm.build_config(auto_unroll_max_step=1400,
unroll_explicit=(device != "cuda")):
func = tvm.build(s, [A, W, B], device, name="conv2d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding))
time_f1 = func.time_evaluator(func.entry_name, ctx, number=400)
cost = time_f1(a, w, b).mean
np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)
print('%g secs/op' % cost)
check_device()
def test_conv2d_nchw():
verify_conv2d_nchw(1, 64, 56, 64, 3, 1, 1)
# ResNet18 worklaods
"""
verify_conv2d_nchw(1, 3, 224, 64, 7, 3, 2)
verify_conv2d_nchw(1, 64, 56, 64, 3, 1, 1)
verify_conv2d_nchw(1, 64, 56, 64, 1, 1, 0)
verify_conv2d_nchw(1, 64, 56, 128, 3, 2, 1)
verify_conv2d_nchw(1, 64, 56, 128, 1, 2, 0)
verify_conv2d_nchw(1, 128, 28, 128, 3, 1, 1)
verify_conv2d_nchw(1, 128, 28, 256, 3, 2, 1)
verify_conv2d_nchw(1, 128, 28, 256, 1, 2, 0)
verify_conv2d_nchw(1, 256, 14, 256, 3, 1, 1)
verify_conv2d_nchw(1, 256, 14, 512, 3, 2, 1)
verify_conv2d_nchw(1, 256, 14, 512, 1, 2, 0)
verify_conv2d_nchw(1, 512, 7, 512, 3, 1, 1)
# Vgg16 workloads
verify_conv2d_nchw(1, 128, 122, 128, 3, 1, 1)
# Super resolution workloads
verify_conv2d_nchw(1, 1, 224, 64, 5, 1, 2)
verify_conv2d_nchw(1, 64, 224, 64, 3, 1, 1)
verify_conv2d_nchw(1, 64, 224, 32, 3, 1, 1)
verify_conv2d_nchw(1, 32, 224, 9, 3, 1, 1)
"""
if __name__ == "__main__":
test_conv2d_nchw()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment