Last active
August 29, 2015 14:27
-
-
Save z-m-k/4e9cc891607e168d2cc0 to your computer and use it in GitHub Desktop.
timeIt function for benchmarking Julia code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using DataFrames | |
function timeIt(fs::Array{Function}, k) | |
nf=length(fs) | |
#Initialize and output checks | |
outs_init=[f() for f in fs] | |
times=fill(0.0, 3, k, nf) | |
for (i,f) in enumerate(fs) | |
for j=1:k | |
t=@timed f() | |
times[:,j,i]=[t[2:end]...] | |
end | |
end | |
out_last=[f() for f in fs] | |
out_same=nf>1 ? [NaN; [out_last[i]==out_last[1] for i=2:nf]] : [true] | |
out_consistent=[x==y for (x,y) in zip(outs_init, out_last)] | |
times[2,:,:]/=1e6 | |
averages=mean(times,2) | |
averages_min=minimum(averages,3) | |
medians=median(times,2) | |
medians_min=minimum(medians,3) | |
e_notation(x)=@sprintf("%.02e", x) | |
results=DataFrame( | |
Function=map(string, fs), | |
Consistent=out_consistent, | |
Same=out_same, | |
Avg_t=map(e_notation, vec(averages[1,:,:])), | |
Avg_t_X= nf>1 ? map(e_notation, vec(averages[1,:,:])./vec(averages_min[1,:,:])) : [NaN], | |
Med_t=map(e_notation, vec(medians[1,:,:])), | |
Med_t_X= nf>1 ? map(e_notation, vec(medians[1,:,:])./vec(medians_min[1,:,:])) : [NaN], | |
Avg_mem=map(e_notation, vec(averages[2,:,:])), | |
Avg_mem_X= nf>1 ? map(e_notation, vec(averages[2,:,:])./vec(averages_min[2,:,:])) : [NaN], | |
Med_mem=map(e_notation, vec(medians[2,:,:])), | |
Med_mem_X= nf>1 ? map(e_notation, vec(medians[2,:,:])./vec(medians_min[2,:,:])) : [NaN] | |
) | |
return results | |
end | |
timeIt(f::Function, k)=timeIt([f], k) | |
timeIt([()->(), ()->1],5); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment