-
-
Save z-m-k/6069807 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Module for IPython to display code with TeX representation. | |
This makes for example the following workflow possible: | |
.. sourcecode:: ipython | |
In [1]: %load_ext py2tex | |
In [2]: from math import * | |
In [3]: %tex (1+sqrt(5))/2 | |
(1+sqrt(5))/2 = 1.618 | |
In [4]: %%tex a = 1.0 | |
...: b=3.0 | |
...: c = sqrt(a**2+b**2) | |
...: | |
a = 1.0 | |
b=3.0 | |
c = sqrt(a**2+b**2) = 3.162 | |
In [5]: %texformat %.3e | |
In [6]: %tex e**10 | |
e**10 = 2.203 \cdot 10^{4} | |
In [7]: %texnr c = sqrt(a**2+b**2) | |
c = sqrt(a**2+b**2) | |
When IPython TeX rendering is enabled, the results are displayed with TeX | |
Usage | |
===== | |
The following magic commands are provided: | |
``%tex`` | |
One line TeX conversion with result output. | |
``%%tex`` | |
Multi line TeX conversion with result output. | |
``%texnr`` | |
One line TeX conversion without result output. | |
``%%texnr`` | |
Multi line TeX conversion without result output. | |
``%texformat`` | |
Set the output format. (e.g. %.3f) | |
Notes | |
===== | |
- Only true mathematical lines are supported for now | |
- Usage of underscores in variable names will result in subscript. | |
First _ will be subscript, all other _ will be converted to a , | |
- greek letters as variable name are converted to their TeX equivalent | |
- Usage of the Unum class for unit-ware calculations is supported. | |
(https://bitbucket.org/kiv/unum/src) | |
""" | |
import ast | |
from IPython.core.display import Latex | |
from IPython.core.magic import (Magics, magics_class, line_magic, | |
cell_magic, line_cell_magic) | |
from IPython.core.displaypub import publish_display_data | |
import re | |
import unum # | |
#----------------------------------------------------------------------------- | |
#Version: 0.1 | |
# | |
#License: | |
# All GPLv3 except the class LatexVisitor which is cc by-sa 3.0 as it is based | |
# upon a snippet from stackoverflow (http://creativecommons.org/licenses/by-sa/3.0/) | |
# | |
#Hosted as a Gist: | |
# https://gist.github.com/4032651 | |
# | |
#Author: | |
# Beke, J. | |
#----------------------------------------------------------------------------- | |
@magics_class | |
class PrettyPrint(Magics): | |
"""Defines IPython magic function for LaTeX output of simple expressions""" | |
outputFormat = "%.3f" | |
greekLetters = {'Alpha': '\\Alpha', | |
'Beta': '\\Beta', | |
'Chi': '\\Chi', | |
'Delta': '\\Delta', | |
'Epsilon': '\\Epsilon', | |
'Eta': '\\Eta', | |
'Gamma': '\\Gamma', | |
'Iota': '\\Iota', | |
'Kappa': '\\Kappa', | |
'Lambda': '\\Lambda', | |
'Mu': '\\Mu', | |
'Nu': '\\Nu', | |
'Omega': '\\Omega', | |
'Phi': '\\Phi', | |
'Pi': '\\Pi', | |
'Psi': '\\Psi', | |
'Rho': '\\Rho', | |
'Sigma': '\\Sigma', | |
'Tau': '\\Tau', | |
'Theta': '\\Theta', | |
'Upsilon': '\\Upsilon', | |
'Xi': '\\Xi', | |
'Zeta': '\\Zeta', | |
'alpha': '\\alpha', | |
'beta': '\\beta', | |
'chi': '\\chi', | |
'delta': '\\delta', | |
'epsilon': '\\epsilon', | |
'eta': '\\eta', | |
'gamma': '\\gamma', | |
'varphi': '\\varphi', | |
'iota': '\\iota', | |
'kappa': '\\kappa', | |
'lambda': '\\lambda', | |
'mu': '\\mu', | |
'nu': '\\nu', | |
'omega': '\\omega', | |
'phi': '\\phi', | |
'pi': '\\pi', | |
'psi': '\\psi', | |
'rho': '\\rho', | |
'sigma': '\\sigma', | |
'tau': '\\tau', | |
'theta': '\\theta', | |
'upsilon': '\\upsilon', | |
'varepsilon': '\\varepsilon', | |
'varkappa': '\\varkappa', | |
'varphi': '\\varphi', | |
'varpi': '\\varpi', | |
'varrho': '\\varrho', | |
'varsigma': '\\varsigma', | |
'vartheta': '\\vartheta', | |
'xi': '\\xi', | |
'zeta': '\\zeta'} | |
def __init__(self, shell): | |
super(PrettyPrint, self).__init__(shell) | |
@line_cell_magic | |
def tex(self, line, cell= None): | |
"""Cell and line magic %tex""" | |
#always do first line | |
self.doLine(line) | |
#in case of cellmagic (with %%tex) | |
if not (cell is None): | |
for cline in cell.split("\n"): | |
if len(cline)>0: | |
self.doLine(cline) | |
@line_cell_magic | |
def texnr(self, line, cell= None): | |
"""Cell and line magic %texnr""" | |
#always do first line | |
self.doLine(line,True) | |
#in case of cellmagic (with %%tex) | |
if not (cell is None): | |
for cline in cell.split("\n"): | |
if len(cline)>0: | |
self.doLine(cline,True) | |
@line_magic | |
def texformat(self, line): | |
"""cell magic to set the result format string""" | |
arg = line.strip(" \t") | |
try: | |
temp = arg % 3.1415 | |
self.outputFormat = line.strip(" \t") | |
except ValueError: | |
raise ValueError(arg + " is not supported") | |
def doLine(self,line,no_result = False): | |
"""Method to convert and print one line""" | |
#check for assignment | |
i = line.find("=") | |
if i<0 or line[i+1]=='=': | |
# no assignment : print expression = result | |
result = self.shell.ev(line) | |
publish_display_data('PrettyPrint', | |
{'text/latex': "$$"+self.py2tex(line)+" = "+self.numericToString(result)+"$$", | |
'text/plain': line+" = "+self.numericToString(result)}) | |
else: | |
# expression was assignment | |
variable = line[:i].strip() | |
expression = line[i+1:].strip() | |
result = self.shell.ev(expression) | |
self.shell.push({variable: result}) | |
temp = re.findall('[-+]?\d*\.\d+[eE][-+]?\d+|[-+]?\d*\.\d+|[-+]?\d+', expression.strip()) | |
try: | |
temp=float(expression) | |
# assignment: variable = number | |
publish_display_data('PrettyPrint', | |
{'text/latex': "$$"+self.parseVariable(variable.strip())+" = "+self.py2tex(expression)+"$$", | |
'text/plain': line}) | |
except ValueError: | |
if no_result: | |
# assignment: variable = expression | |
publish_display_data('PrettyPrint', | |
{'text/latex': "$$"+self.parseVariable(variable.strip())+" = "+self.py2tex(expression)+"$$", | |
'text/plain': line}) | |
else: | |
# assignment: variable = expression = number | |
publish_display_data('PrettyPrint', | |
{'text/latex': "$$"+self.parseVariable(variable.strip())+" = "+self.py2tex(expression)+" = "+self.numericToString(self.shell.ev(variable.strip()))+"$$", | |
'text/plain': line+" = "+self.numericToString(self.shell.ev(variable.strip()))}) | |
def numericToString(self, number): | |
"""Convert a number to the defined string representation""" | |
if type(number) == unum.Unum: | |
a = self.outputFormat % number._value | |
unit = "\\quad %s" % self.prettyUnumUnit(number) #number.strUnit()[1:-1] | |
else: | |
a = self.outputFormat % number | |
unit = '' | |
a = a.split("e") | |
if len(a)==1: | |
return a[0] + unit | |
else: | |
if int(a[1]) != 0: | |
return "%s \\cdot 10^{%s} %s" % (a[0], int(a[1]), unit) | |
else: | |
return a[0] + unit | |
def py2tex(self, expr): | |
"""Actual expression to TeX conversion""" | |
pt = ast.parse(expr) | |
return LatexVisitor().visit(pt.body[0].value) | |
def parseVariable(self, name): | |
"""Convert a variable to greek letters and parse the _""" | |
#parse greek letters | |
name = name.split("_") | |
for i in range(len(name)): | |
if self.greekLetters.has_key(name[i]): | |
name[i] = self.greekLetters[name[i]] | |
#first part as mbox | |
if name[0].find("\\") < 0: | |
name[0] = "\\mbox{%s}" % name[0] | |
#parse underscore and comma | |
if len(name)>1: | |
return name[0]+"_{"+','.join(name[1:])+"}" | |
return name[0] | |
def prettyUnumUnit(self,unum): | |
"""Pretty print a Unum unit object""" | |
n = '' | |
d = '' | |
for name,power in sorted(unum._unit.items()): | |
if power < 0: | |
if power ==-1: | |
d += "$\\mbox{%s}" % (name) | |
else: | |
d += "$\\mbox{%s}^{%d}" % (name, power*-1) | |
else: | |
if power == 1: | |
n += "$\\mbox{%s}" % (name) | |
else: | |
n += "$\\mbox{%s}^{%d}" % (name, power) | |
if n=='': | |
n ='1' | |
n=n.strip("$").replace("$","\\cdot") | |
d=d.strip("$").replace("$","\\cdot") | |
if d =='': | |
if n=='1': | |
return '' | |
else: | |
return n | |
else: | |
return n+"/"+d | |
class LatexVisitor(ast.NodeVisitor): | |
# based on source: http://stackoverflow.com/questions/3867028/converting-a-python-numeric-expression-to-latex | |
greekLetters = PrettyPrint.greekLetters | |
functions = {'arccos': '\\arccos', | |
'arcsin': '\\arcsin', | |
'arctan': '\\arctan', | |
'cos': '\\cos', | |
'cosh': '\\cosh', | |
'cot': '\\cot', | |
'coth': '\\coth', | |
'csc': '\\csc', | |
'ln': '\\ln', | |
'log': '\\log', | |
'max': '\\max', | |
'min': '\\min', | |
'sec': '\\sec', | |
'sin': '\\sin', | |
'sinh': '\\sinh', | |
'tan': '\\tan', | |
'tanh': '\\tanh'} | |
def prec(self, n): | |
return getattr(self, 'prec_'+n.__class__.__name__, getattr(self, 'generic_prec'))(n) | |
def visit_Call(self, n): | |
func = self.visit(n.func) | |
args = ', '.join(map(self.visit, n.args)) | |
if func == 'sqrt': | |
return '\sqrt{%s}' % args | |
else: | |
# parse know LaTeX functions | |
if self.functions.has_key(func): | |
return r'%s\left(%s\right)' % (self.functions[func], args) | |
else: | |
return r'\mbox{%s}\left(%s\right)' % (func, args) | |
def prec_Call(self, n): | |
return 1000 | |
def visit_Name(self, n): | |
#test if unum | |
#if get_ipython().ev("type(%s)" % n.id) == unum.Unum: | |
# return "\\mbox{%s}" % n.id | |
#parse greek letters | |
name = n.id.split("_") | |
for i in range(len(name)): | |
if self.greekLetters.has_key(name[i]): | |
name[i] = self.greekLetters[name[i]] | |
#parse underscore and comma | |
if len(name)>1: | |
return name[0]+"_{"+','.join(name[1:])+"}" | |
return name[0] | |
def prec_Name(self, n): | |
return 1000 | |
def visit_UnaryOp(self, n): | |
if self.prec(n.op) > self.prec(n.operand): | |
return r'%s \left(%s\right)' % (self.visit(n.op), self.visit(n.operand)) | |
else: | |
return r'%s %s' % (self.visit(n.op), self.visit(n.operand)) | |
def prec_UnaryOp(self, n): | |
return self.prec(n.op) | |
def visit_BinOp(self, n): | |
if self.prec(n.op) > self.prec(n.left): | |
left = r'\left(%s\right)' % self.visit(n.left) | |
else: | |
left = self.visit(n.left) | |
if self.prec(n.op) > self.prec(n.right): | |
right = r'\left(%s\right)' % self.visit(n.right) | |
else: | |
right = self.visit(n.right) | |
if isinstance(n.op, ast.Div): | |
return r'\frac{%s}{%s}' % (self.visit(n.left), self.visit(n.right)) | |
elif isinstance(n.op, ast.FloorDiv): | |
return r'\left\lfloor\frac{%s}{%s}\right\rfloor' % (self.visit(n.left), self.visit(n.right)) | |
elif isinstance(n.op, ast.Pow): | |
return r'%s^{%s}' % (left, self.visit(n.right)) | |
else: | |
return r'%s %s %s' % (left, self.visit(n.op), right) | |
def prec_BinOp(self, n): | |
return self.prec(n.op) | |
def visit_Sub(self, n): | |
return '-' | |
def prec_Sub(self, n): | |
return 300 | |
def visit_Add(self, n): | |
return '+' | |
def prec_Add(self, n): | |
return 300 | |
def visit_Mult(self, n): | |
return '\\cdot' | |
def prec_Mult(self, n): | |
return 400 | |
def visit_Mod(self, n): | |
return '\\bmod' | |
def prec_Mod(self, n): | |
return 500 | |
def prec_Pow(self, n): | |
return 700 | |
def prec_Div(self, n): | |
return 400 | |
def prec_FloorDiv(self, n): | |
return 400 | |
def visit_LShift(self, n): | |
return '\\mbox{shiftLeft}' | |
def visit_RShift(self, n): | |
return '\\mbox{shiftRight}' | |
def visit_BitOr(self, n): | |
return '\\mbox{or}' | |
def visit_BitXor(self, n): | |
return '\\mbox{xor}' | |
def visit_BitAnd(self, n): | |
return '\\mbox{and}' | |
def visit_Invert(self, n): | |
return '\\mbox{invert}' | |
def prec_Invert(self, n): | |
return 800 | |
def visit_Not(self, n): | |
return '\\neg' | |
def prec_Not(self, n): | |
return 800 | |
def visit_UAdd(self, n): | |
return '+' | |
def prec_UAdd(self, n): | |
return 800 | |
def visit_USub(self, n): | |
return '-' | |
def prec_USub(self, n): | |
return 800 | |
def visit_Num(self, n): | |
#TODO: convert forms with e03 ! | |
return str(n.n) | |
def prec_Num(self, n): | |
return 1000 | |
def generic_visit(self, n): | |
#walk ??? | |
if isinstance(n, ast.AST): | |
return r'' % (n.__class__.__name__, ', '.join(map(self.visit, [getattr(n, f) for f in n._fields]))) | |
else: | |
return str(n) | |
def generic_prec(self, n): | |
return 0 | |
def load_ipython_extension(ip): | |
#register magic to hold state | |
magicPrettyPrint = PrettyPrint(ip) | |
ip.register_magics(magicPrettyPrint) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment