Last active
January 6, 2017 02:25
-
-
Save zachmayer/5152157 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Setup | |
rm(list = ls(all = TRUE)) | |
gc(reset=TRUE) | |
set.seed(42) #From random.org | |
#Libraries | |
library(caret) | |
library(devtools) | |
install_github('caretEnsemble', 'zachmayer') #Install zach's caretEnsemble package | |
library(caretEnsemble) | |
#Data | |
library(mlbench) | |
data(BostonHousing2) | |
X <- model.matrix(cmedv~crim+zn+indus+chas+nox+rm+age+dis+ | |
rad+tax+ptratio+b+lstat+lat+lon, BostonHousing2)[,-1] | |
X <- data.frame(X) | |
Y <- BostonHousing2$cmedv | |
#Split train/test | |
train <- runif(nrow(X)) <= .66 | |
#Setup CV Folds | |
#returnData=FALSE saves some space | |
folds=5 | |
repeats=1 | |
myControl <- trainControl(method='cv', number=folds, repeats=repeats, returnResamp='none', | |
returnData=FALSE, savePredictions=TRUE, | |
verboseIter=TRUE, allowParallel=TRUE, | |
index=createMultiFolds(Y[train], k=folds, times=repeats)) | |
PP <- c('center', 'scale') | |
#Train some models | |
model1 <- train(X[train,], Y[train], method='gbm', trControl=myControl, | |
tuneGrid=expand.grid(.n.trees=500, .interaction.depth=15, .shrinkage = 0.01)) | |
model2 <- train(X[train,], Y[train], method='blackboost', trControl=myControl) | |
model3 <- train(X[train,], Y[train], method='parRF', trControl=myControl) | |
model4 <- train(X[train,], Y[train], method='mlpWeightDecay', trControl=myControl, trace=FALSE, preProcess=PP) | |
model5 <- train(X[train,], Y[train], method='ppr', trControl=myControl, preProcess=PP) | |
model6 <- train(X[train,], Y[train], method='earth', trControl=myControl, preProcess=PP) | |
model7 <- train(X[train,], Y[train], method='glm', trControl=myControl, preProcess=PP) | |
model8 <- train(X[train,], Y[train], method='svmRadial', trControl=myControl, preProcess=PP) | |
model9 <- train(X[train,], Y[train], method='gam', trControl=myControl, preProcess=PP) | |
model10 <- train(X[train,], Y[train], method='glmnet', trControl=myControl, preProcess=PP) | |
#Make a list of all the models | |
all.models <- list(model1, model2, model3, model4, model5, model6, model7, model8, model9, model10) | |
names(all.models) <- sapply(all.models, function(x) x$method) | |
sort(sapply(all.models, function(x) min(x$results$RMSE))) | |
#Make a greedy ensemble - currently can only use RMSE | |
greedy <- caretEnsemble(all.models, iter=1000L) | |
sort(greedy$weights, decreasing=TRUE) | |
greedy$error | |
#Make a linear regression ensemble | |
linear <- caretStack(all.models, method='glm', trControl=trainControl(method='cv')) | |
summary(linear$ens_model$finalModel) | |
linear$error | |
#Predict for test set: | |
preds <- data.frame(sapply(all.models, predict, newdata=X[!train,])) | |
preds$ENS_greedy <- predict(greedy, newdata=X[!train,]) | |
preds$ENS_linear <- predict(linear, newdata=X[!train,]) | |
sort(sqrt(colMeans((preds - Y[!train]) ^ 2))) |
Hello,
I've tried your code, but I got an error "is(all.models, "caretList") is not TRUE", when running caretEnsemble command, "caretEnsemble(all.models, iter=1000L)". Should I use caretList instead of just making a list of all the models? Thanks.
according to the new released package you have to use caretList function to combine the models
Hi,
gbm needs to have the parameter .n.minobsinnode=10 or other values than 10
model1 <- train(X[train,], Y[train], method='gbm', trControl=myControl,tuneGrid=expand.grid(.n.trees=500, .n.minobsinnode=10, .interaction.depth=15, .shrinkage = 0.01 ))
otherwise the following error occurs.
Error in train.default(X[train, ], Y[train], method = "gbm", trControl = myControl, :
The tuning parameter grid should have columns n.trees, interaction.depth, shrinkage, n.minobsinnode
Also if no parallel backend is registered it will just run on one CPU or throw errors
Also bunch of dependencies are missing if installed in freshly installed R 3.2.2.
See also demo2.r
Cheers
Tobias
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi
When run this script, getting the below error for model3, missing something here?. Used same script without any changes.
Aggregating results
Selecting tuning parameters
Error in train.default(X[train, ], Y[train], method = "parRF", trControl = myControl) :
final tuning parameters could not be determined
In addition: There were 17 warnings (use warnings() to see them)
Thanks
Bhaskar