Last active
June 13, 2016 02:43
-
-
Save zachmayer/5179418 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Setup | |
rm(list = ls(all = TRUE)) | |
gc(reset=TRUE) | |
set.seed(1234) #From random.org | |
#Libraries | |
library(caret) | |
library(devtools) | |
install_github('caretEnsemble', 'zachmayer') #Install zach's caretEnsemble package | |
library(caretEnsemble) | |
#Data | |
library(mlbench) | |
dat <- mlbench.xor(500, 2) | |
X <- data.frame(dat$x) | |
Y <- factor(ifelse(dat$classes=='1', 'Yes', 'No')) | |
#Split train/test | |
train <- runif(nrow(X)) <= .66 | |
#Setup CV Folds | |
#returnData=FALSE saves some space | |
folds=5 | |
repeats=1 | |
myControl <- trainControl(method='cv', number=folds, repeats=repeats, | |
returnResamp='none', classProbs=TRUE, | |
returnData=FALSE, savePredictions=TRUE, | |
verboseIter=TRUE, allowParallel=TRUE, | |
summaryFunction=twoClassSummary, | |
index=createMultiFolds(Y[train], k=folds, times=repeats)) | |
PP <- c('center', 'scale') | |
#Train some models | |
model1 <- train(X[train,], Y[train], method='gbm', trControl=myControl, | |
tuneGrid=expand.grid(.n.trees=500, .interaction.depth=15, .shrinkage = 0.01)) | |
model2 <- train(X[train,], Y[train], method='blackboost', trControl=myControl) | |
model3 <- train(X[train,], Y[train], method='parRF', trControl=myControl) | |
model4 <- train(X[train,], Y[train], method='mlpWeightDecay', trControl=myControl, trace=FALSE, preProcess=PP) | |
model5 <- train(X[train,], Y[train], method='knn', trControl=myControl, preProcess=PP) | |
model6 <- train(X[train,], Y[train], method='earth', trControl=myControl, preProcess=PP) | |
model7 <- train(X[train,], Y[train], method='glm', trControl=myControl, preProcess=PP) | |
model8 <- train(X[train,], Y[train], method='svmRadial', trControl=myControl, preProcess=PP) | |
model9 <- train(X[train,], Y[train], method='gam', trControl=myControl, preProcess=PP) | |
model10 <- train(X[train,], Y[train], method='glmnet', trControl=myControl, preProcess=PP) | |
#Make a list of all the models | |
all.models <- list(model1, model2, model3, model4, model5, model6, model7, model8, model9, model10) | |
names(all.models) <- sapply(all.models, function(x) x$method) | |
sort(sapply(all.models, function(x) min(x$results$ROC))) | |
#Make a greedy ensemble - currently can only use RMSE | |
greedy <- caretEnsemble(all.models, iter=1000L) | |
sort(greedy$weights, decreasing=TRUE) | |
greedy$error | |
#Make a linear regression ensemble | |
linear <- caretStack(all.models, method='glm', trControl=trainControl(method='cv')) | |
linear$error | |
#Predict for test set: | |
library(caTools) | |
preds <- data.frame(sapply(all.models, function(x){predict(x, X[!train,], type='prob')[,2]})) | |
preds$ENS_greedy <- predict(greedy, newdata=X[!train,]) | |
preds$ENS_linear <- predict(linear, newdata=X[!train,], type='prob')[,2] | |
sort(data.frame(colAUC(preds, Y[!train]))) |
Hi,
gbm needs to have the parameter .n.minobsinnode=10 or other values than 10
model1 <- train(X[train,], Y[train], method='gbm', trControl=myControl,tuneGrid=expand.grid(.n.trees=500, .n.minobsinnode=10, .interaction.depth=15, .shrinkage = 0.01 ))
otherwise the following error occurs.
Error in train.default(X[train, ], Y[train], method = "gbm", trControl = myControl, :
The tuning parameter grid should have columns n.trees, interaction.depth, shrinkage, n.minobsinnode
Also if no parallel backend is registered it will just run on one CPU or throw errors
Also bunch of dependencies are missing if installed in freshly installed R 3.2.2.
Cheers
Tobias
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I have two queries:
model1 <- train(X, Y, method='gbm', trControl=myControl,tuneGrid=expand.grid(.n.trees=100, .interaction.depth=15, .shrinkage = 0.01))
gbmModel = gbm(class~.-weight, data=train, weights=train$weight,verbose=TRUE)
Thanks
cosmos