I finally got around to finishing this tutorial and put it on my blog. Please enjoy the finished version here.
-
-
Save zacstewart/5978000 to your computer and use it in GitHub Desktop.
import os | |
import numpy | |
from pandas import DataFrame | |
from sklearn.feature_extraction.text import CountVectorizer | |
from sklearn.naive_bayes import MultinomialNB | |
from sklearn.pipeline import Pipeline | |
from sklearn.cross_validation import KFold | |
from sklearn.metrics import confusion_matrix, f1_score | |
NEWLINE = '\n' | |
HAM = 'ham' | |
SPAM = 'spam' | |
SOURCES = [ | |
('data/spam', SPAM), | |
('data/easy_ham', HAM), | |
('data/hard_ham', HAM), | |
('data/beck-s', HAM), | |
('data/farmer-d', HAM), | |
('data/kaminski-v', HAM), | |
('data/kitchen-l', HAM), | |
('data/lokay-m', HAM), | |
('data/williams-w3', HAM), | |
('data/BG', SPAM), | |
('data/GP', SPAM), | |
('data/SH', SPAM) | |
] | |
SKIP_FILES = {'cmds'} | |
def read_files(path): | |
for root, dir_names, file_names in os.walk(path): | |
for path in dir_names: | |
read_files(os.path.join(root, path)) | |
for file_name in file_names: | |
if file_name not in SKIP_FILES: | |
file_path = os.path.join(root, file_name) | |
if os.path.isfile(file_path): | |
past_header, lines = False, [] | |
f = open(file_path, encoding="latin-1") | |
for line in f: | |
if past_header: | |
lines.append(line) | |
elif line == NEWLINE: | |
past_header = True | |
f.close() | |
content = NEWLINE.join(lines) | |
yield file_path, content | |
def build_data_frame(path, classification): | |
rows = [] | |
index = [] | |
for file_name, text in read_files(path): | |
rows.append({'text': text, 'class': classification}) | |
index.append(file_name) | |
data_frame = DataFrame(rows, index=index) | |
return data_frame | |
data = DataFrame({'text': [], 'class': []}) | |
for path, classification in SOURCES: | |
data = data.append(build_data_frame(path, classification)) | |
data = data.reindex(numpy.random.permutation(data.index)) | |
pipeline = Pipeline([ | |
('count_vectorizer', CountVectorizer(ngram_range=(1, 2))), | |
('classifier', MultinomialNB()) | |
]) | |
k_fold = KFold(n=len(data), n_folds=6) | |
scores = [] | |
confusion = numpy.array([[0, 0], [0, 0]]) | |
for train_indices, test_indices in k_fold: | |
train_text = data.iloc[train_indices]['text'].values | |
train_y = data.iloc[train_indices]['class'].values.astype(str) | |
test_text = data.iloc[test_indices]['text'].values | |
test_y = data.iloc[test_indices]['class'].values.astype(str) | |
pipeline.fit(train_text, train_y) | |
predictions = pipeline.predict(test_text) | |
confusion += confusion_matrix(test_y, predictions) | |
score = f1_score(test_y, predictions, pos_label=SPAM) | |
scores.append(score) | |
print('Total emails classified:', len(data)) | |
print('Score:', sum(scores)/len(scores)) | |
print('Confusion matrix:') | |
print(confusion) |
Just wanted to say thank you for a simply perfect article, i'm looking for a way to classify attachments coming in on emails, keeping an eye out for a certain type of document, this is by far the best written and explained example I've come across.
How to save the trained data , so that I don't have to train everytime I use the script?
@zurez - you can simply dump it to a file then load it in later.
from sklearn.externals import joblib
joblib.dump(clf, 'my_trained_data.pkl', compress=9)
Then to load it back in
from sklearn.externals import joblib
trained_data = joblib.load('my_trained_data.pkl')
I've tried to edit the script to use my own text. I get the following error on this line
data = data.reindex(numpy.random.permutation(data.index))
cannot reindex from a duplicate axis
I have a question. The point where you have initialized SOURCE for creating a list of data and type(Ham/spam). Can we automate it? I mean to ask whether we have to do it manually if I have 500 data or more?
@zurez...Pickle the pipeline (model) object to a file..Later you can load the pickled object.
Try the
sklearn.linear_model.SGDClassifier
(SVM), it will probably give even better results!Source:
http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html