Last active
April 19, 2022 16:20
-
-
Save zaloogarcia/11508e9ca786c6851513d31fb2e70bfc to your computer and use it in GitHub Desktop.
Script for converting Pandas DF to Spark's DF
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark.sql.types import * | |
# Auxiliar functions | |
# Pandas Types -> Sparks Types | |
def equivalent_type(f): | |
if f == 'datetime64[ns]': return DateType() | |
elif f == 'int64': return LongType() | |
elif f == 'int32': return IntegerType() | |
elif f == 'float64': return FloatType() | |
else: return StringType() | |
def define_structure(string, format_type): | |
try: typo = equivalent_type(format_type) | |
except: typo = StringType() | |
return StructField(string, typo) | |
#Given pandas dataframe, it will return a spark's dataframe | |
def pandas_to_spark(df_pandas): | |
columns = list(df_pandas.columns) | |
types = list(df_pandas.dtypes) | |
struct_list = [] | |
for column, typo in zip(columns, types): | |
struct_list.append(define_structure(column, typo)) | |
p_schema = StructType(struct_list) | |
return sqlContext.createDataFrame(df_pandas, p_schema) | |
Thanks for this one, it's been very useful on my end!
I am not that experienced in pyspark, but is there a reason why equivalent_type
returns a new instance of XxxxType()
at each call, rather than using a dictionary like below?
equivalent_type_dict = {
'datetime64[ns]': DateTime(),
'int64': LongType(),
'int32': IntegerType(),
'float64': DoubleType(),
'float32': FloatType(),
}
def define_structure(string, format_type):
try: typo = equivalent_type_dict[format_type]
except: typo = StringType()
return StructField(string, typo)
...
I can suggest updating this:
equivalent_type_dict = {
...
'float64': DoubleType(),
'float32': FloatType(),
...
}
Because, using FloatType
will remove some decimals, like this:
Pandas: 9544.145833333334 | Float64
SparkDF: 9544.1455 | float
SparkDF: 9544.145833333334 | double
I can suggest updating this:
equivalent_type_dict = { ... 'float64': DoubleType(), 'float32': FloatType(), ... }
Because, using
FloatType
will remove some decimals, like this:Pandas: 9544.145833333334 | Float64
SparkDF: 9544.1455 | float
SparkDF: 9544.145833333334 | double
Thanks for the suggestion, I updated this part in my code.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
from pyspark import SparkContext, SQLContext
sqlContext = SQLContext(SparkContext.getOrCreate())
Try adding this, then it would work...