Last active
May 14, 2016 12:31
-
-
Save zaltoprofen/f26c39ce89ac82ab8b7d0e3387032180 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.preprocessing import PolynomialFeatures | |
from sklearn.linear_model import LinearRegression, Lasso | |
from sklearn.pipeline import Pipeline | |
import numpy as np | |
import matplotlib.pyplot as plt | |
modelF = lambda deg: Pipeline([ | |
('poly', PolynomialFeatures(degree=deg)), | |
('linear', LinearRegression(fit_intercept=False))]) | |
def f(x): | |
return 2 + 3*x - x**2 | |
X = (np.random.rand(50) * 10 - 5) | |
Y = f(X) + np.random.normal(0, 5, size=X.shape) | |
plt.plot(X, Y, 'x') | |
plt.plot(np.arange(-5, 5, 0.01), f(np.arange(-5, 5, 0.01)), label='true') | |
poor_model = modelF(2) | |
rich_model = modelF(20) | |
poor_model = poor_model.fit(X[:, np.newaxis], Y) | |
rich_model = rich_model.fit(X[:, np.newaxis], Y) | |
def plot_model(model, name): | |
X = np.arange(-5, 5, 0.01) | |
eY = model.predict(X[:, np.newaxis]) | |
plt.plot(X, eY, '-', label=name) | |
def likelihood(model, X, y): | |
ey = model.predict(X[:, np.newaxis]) | |
rss = np.linalg.norm(y - ey)**2 | |
n = y.size | |
return -n/2 * (np.log(2*np.pi) + 1 + np.log(rss/n)) | |
print('poor model log-likelihood: %f' % likelihood(poor_model, X, Y)) | |
print('rich model log-likelihood: %f' % likelihood(rich_model, X, Y)) | |
plot_model(poor_model, 'poor') | |
plot_model(rich_model, 'rich') | |
plt.ylim(-40, 15) | |
plt.xlim(-5, 5) | |
plt.legend(loc='lower right') | |
plt.savefig('plot.png') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment