Created
February 27, 2024 07:36
-
-
Save zamai/d3d3e5e5ef5456ebceae544e4bac1e22 to your computer and use it in GitHub Desktop.
SUPER BLOCKS GilKER puzzle solver
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
YELLOW = 'yellow' | |
BLUE = 'blue' | |
RED = 'red' | |
GREEN = 'green' | |
# ANSI color codes | |
COLOR_CODES = { | |
YELLOW: '\033[93m', # Light yellow | |
BLUE: '\033[94m', # Light blue | |
GREEN: '\033[92m', # Light green | |
RED: '\033[91m', # Light red | |
'RESET': '\033[0m' # Reset to default terminal color | |
} | |
class PuzzlePiece: | |
def __init__(self, shape, color, identifier): | |
self.shape = shape | |
self.color = color | |
self.identifier = identifier # Unique identifier for each piece | |
self.unique_rotations = self.calculate_unique_rotations() | |
self.rotations = [np.rot90(shape, k=i) for i in range(self.unique_rotations)] | |
def calculate_unique_rotations(self): | |
# Improved calculation of unique rotations | |
unique_shapes = [] | |
for i in range(4): | |
rotated_shape = np.rot90(self.shape, k=i) | |
if not any(np.array_equal(rotated_shape, us) for us in unique_shapes): | |
unique_shapes.append(rotated_shape) | |
return len(unique_shapes) | |
def get_rotation(self, rotation_index): | |
# Return the shape for a given rotation index | |
return self.rotations[rotation_index % self.unique_rotations] | |
def fits(grid, piece_shape, row, col): | |
nrows, ncols = piece_shape.shape | |
if row + nrows > grid.shape[0] or col + ncols > grid.shape[1]: | |
return False # Piece would go out of bounds | |
for i in range(nrows): | |
for j in range(ncols): | |
if piece_shape[i, j] == 1 and grid[row + i, col + j] != 1: | |
return False | |
return True | |
def place_piece(grid, piece_shape, identifier, row, col): | |
nrows, ncols = piece_shape.shape | |
new_grid = np.copy(grid) | |
for i in range(nrows): | |
for j in range(ncols): | |
if piece_shape[i, j] == 1: | |
new_grid[row + i, col + j] = identifier | |
return new_grid | |
def solve_puzzle(grid, pieces, index=0): | |
if not np.any(grid == 1): | |
return grid | |
if index >= len(pieces): | |
return None | |
piece = pieces[index] | |
for rotation_index in range(piece.unique_rotations): | |
rotated_shape = piece.get_rotation(rotation_index) | |
for row in range(grid.shape[0]): | |
for col in range(grid.shape[1]): | |
if fits(grid, rotated_shape, row, col): | |
new_grid = place_piece(grid, rotated_shape, piece.identifier, row, col) | |
result = solve_puzzle(new_grid, pieces, index + 1) | |
if result is not None: | |
return result | |
# If none of the positions and rotations work, try the next piece | |
return solve_puzzle(grid, pieces, index + 1) | |
ALL_YELLOW = [ | |
PuzzlePiece(np.array([ | |
[0, 1, 0], | |
[1, 1, 1], | |
[0, 1, 0], | |
]), YELLOW, "A"), | |
PuzzlePiece(np.array([ | |
[1, 1, 1, 0], | |
[0, 1, 1, 1], | |
]), YELLOW, "B"), | |
PuzzlePiece(np.array([ | |
[0, 1, 0], | |
[1, 1, 1], | |
[1, 0, 1], | |
]), YELLOW, "C"), | |
PuzzlePiece(np.array([ | |
[1, 1, 1, 1], | |
]), YELLOW, "D") | |
] | |
ALL_BLUE = [ | |
PuzzlePiece(np.array([ | |
[1, 0, 0], | |
[1, 0, 0], | |
[1, 1, 1], | |
]), BLUE, "E"), | |
PuzzlePiece(np.array([ | |
[0, 1, 1, 0], | |
[1, 1, 1, 1], | |
]), BLUE, "F"), | |
PuzzlePiece(np.array([ | |
[0, 1, 1], | |
[1, 1, 0], | |
]), BLUE, "G"), | |
PuzzlePiece(np.array([ | |
[0, 1, 0], | |
[1, 1, 1], | |
[0, 1, 0], | |
[0, 1, 0], | |
]), BLUE, "H"), | |
] | |
ALL_GREEN = [ | |
PuzzlePiece(np.array([ | |
[1, 1, 0], | |
[1, 1, 1], | |
]), GREEN, "I"), | |
PuzzlePiece(np.array([ | |
[1, 0, 0], | |
[1, 1, 0], | |
[0, 1, 1], | |
]), GREEN, "J"), | |
PuzzlePiece(np.array([ | |
[1, 0, 0, 1], | |
[1, 1, 1, 1], | |
]), GREEN, "K"), | |
PuzzlePiece(np.array([ | |
[0, 1, 0], | |
[0, 1, 0], | |
[1, 1, 1], | |
]), GREEN, "L"), | |
] | |
ALL_RED = [ | |
PuzzlePiece(np.array([ | |
[1, 0, 0], | |
[1, 1, 0], | |
[1, 1, 1], | |
]), RED, "M"), | |
PuzzlePiece(np.array([ | |
[0, 1, 0], | |
[1, 1, 1], | |
[1, 1, 0], | |
]), RED, "N"), | |
PuzzlePiece(np.array([ | |
[1, 0, 0, 0], | |
[1, 1, 1, 1], | |
]), RED, "O"), | |
PuzzlePiece(np.array([ | |
[1, 0, 1], | |
[1, 1, 1], | |
]), RED, "P"), | |
] | |
def print_colored_grid(solution_grid, input_pieces): | |
piece_color_map = {piece.identifier: COLOR_CODES[piece.color] for piece in input_pieces} | |
print() | |
for row in solution_grid: | |
for cell in row: | |
if cell in piece_color_map: | |
print(f"{piece_color_map[cell]}{cell}{COLOR_CODES['RESET']}", end=" ") | |
else: | |
print('.', end=" ") # Empty cells | |
print() # Newline for the next row | |
def run(grid, pieces): | |
res = solve_puzzle(grid, pieces) | |
print_colored_grid(solution_grid=res, input_pieces=pieces) | |
### TESTS: | |
def test_real_case_8_pieces(): | |
res = solve_puzzle( | |
np.array([ | |
[1, 1, 1, 1, 0, 0, 0, 0], | |
[1, 1, 1, 1, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1, 0, 0, 0], | |
[0, 1, 0, 1, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 1, 1, 1, 1, 1], | |
[0, 1, 1, 1, 1, 1, 1, 0], | |
], dtype=object), | |
ALL_YELLOW + ALL_BLUE | |
) | |
print_colored_grid(solution_grid=res, input_pieces=ALL_YELLOW + ALL_BLUE) | |
assert res is not None | |
def test_real_case_12_piece_300(): | |
input_pieces = ALL_BLUE + ALL_GREEN + ALL_RED | |
res = solve_puzzle( | |
np.array([ | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 0, 1, 1, 0], | |
[1, 1, 1, 1, 1, 1, 1, 0], | |
[1, 1, 1, 1, 1, 1, 1, 0], | |
[1, 1, 1, 1, 1, 1, 1, 0], | |
[0, 0, 0, 1, 1, 1, 1, 1], | |
[0, 0, 0, 1, 1, 1, 1, 0], | |
], dtype=object), | |
input_pieces | |
) | |
print_colored_grid(res, input_pieces) | |
assert res is not None | |
@pytest.mark.skip | |
def test_real_case_all_pieces_max_hard(): | |
input_pieces = ALL_YELLOW + ALL_BLUE + ALL_GREEN + ALL_RED | |
res = solve_puzzle( | |
np.array([ | |
[0, 0, 0, 0, 1, 1, 1, 1], | |
[1, 1, 0, 0, 0, 1, 1, 1], | |
[1, 1, 1, 1, 0, 1, 1, 1], | |
[1, 1, 1, 1, 0, 0, 0, 1], | |
[1, 1, 1, 1, 1, 1, 0, 0], | |
[1, 1, 1, 1, 1, 1, 1, 0], | |
[1, 1, 1, 1, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1, 1, 1], | |
], dtype=object), | |
input_pieces | |
) | |
print_colored_grid(res, input_pieces) | |
assert res is not None |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment