Last active
September 24, 2017 03:01
-
-
Save zeakey/511f145822ea14ab6f58079d1ae082aa to your computer and use it in GitHub Desktop.
debug_fsds.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
base_lr: 9.99999997475e-07 | |
display: 10 | |
max_iter: 15000 | |
lr_policy: "step" | |
gamma: 0.10000000149 | |
momentum: 0.899999976158 | |
weight_decay: 0.000199999994948 | |
stepsize: 5000 | |
snapshot: 1000 | |
snapshot_prefix: "snapshot/fsds" | |
random_seed: 831486 | |
debug_info: false | |
net: "model/fsds_train.pt" | |
iter_size: 1 | |
type: "SGD" |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
layer { | |
name: "data" | |
type: "Python" | |
top: "data" | |
top: "label" | |
python_param { | |
module: "pylayer" | |
layer: "FSDSDataLayer" | |
param_str: "{\'shuffle\': False, \'source\': \'list_shuffled.txt\', \'phase\': \'train\', \'ignore_label\': -1, \'root\': \'data/SK-LARGE/\', \'mean\': (104.00699, 116.66877, 122.67892)}" | |
} | |
} | |
layer { | |
name: "conv1_1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 35 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu1_1" | |
type: "ReLU" | |
bottom: "conv1_1" | |
top: "conv1_1" | |
} | |
layer { | |
name: "conv1_2" | |
type: "Convolution" | |
bottom: "conv1_1" | |
top: "conv1_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu1_2" | |
type: "ReLU" | |
bottom: "conv1_2" | |
top: "conv1_2" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1_2" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2_1" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu2_1" | |
type: "ReLU" | |
bottom: "conv2_1" | |
top: "conv2_1" | |
} | |
layer { | |
name: "conv2_2" | |
type: "Convolution" | |
bottom: "conv2_1" | |
top: "conv2_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu2_2" | |
type: "ReLU" | |
bottom: "conv2_2" | |
top: "conv2_2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2_2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv3_1" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu3_1" | |
type: "ReLU" | |
bottom: "conv3_1" | |
top: "conv3_1" | |
} | |
layer { | |
name: "conv3_2" | |
type: "Convolution" | |
bottom: "conv3_1" | |
top: "conv3_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu3_2" | |
type: "ReLU" | |
bottom: "conv3_2" | |
top: "conv3_2" | |
} | |
layer { | |
name: "conv3_3" | |
type: "Convolution" | |
bottom: "conv3_2" | |
top: "conv3_3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu3_3" | |
type: "ReLU" | |
bottom: "conv3_3" | |
top: "conv3_3" | |
} | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv3_3" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv4_1" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv4_1" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu4_1" | |
type: "ReLU" | |
bottom: "conv4_1" | |
top: "conv4_1" | |
} | |
layer { | |
name: "conv4_2" | |
type: "Convolution" | |
bottom: "conv4_1" | |
top: "conv4_2" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu4_2" | |
type: "ReLU" | |
bottom: "conv4_2" | |
top: "conv4_2" | |
} | |
layer { | |
name: "conv4_3" | |
type: "Convolution" | |
bottom: "conv4_2" | |
top: "conv4_3" | |
param { | |
lr_mult: 1.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 2.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu4_3" | |
type: "ReLU" | |
bottom: "conv4_3" | |
top: "conv4_3" | |
} | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv4_3" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv5_1" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "conv5_1" | |
param { | |
lr_mult: 100.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 200.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu5_1" | |
type: "ReLU" | |
bottom: "conv5_1" | |
top: "conv5_1" | |
} | |
layer { | |
name: "conv5_2" | |
type: "Convolution" | |
bottom: "conv5_1" | |
top: "conv5_2" | |
param { | |
lr_mult: 100.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 200.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu5_2" | |
type: "ReLU" | |
bottom: "conv5_2" | |
top: "conv5_2" | |
} | |
layer { | |
name: "conv5_3" | |
type: "Convolution" | |
bottom: "conv5_2" | |
top: "conv5_3" | |
param { | |
lr_mult: 100.0 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 200.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
} | |
} | |
layer { | |
name: "relu5_3" | |
type: "ReLU" | |
bottom: "conv5_3" | |
top: "conv5_3" | |
} | |
layer { | |
name: "score_dsn2" | |
type: "Convolution" | |
bottom: "conv2_2" | |
top: "score_dsn2" | |
param { | |
lr_mult: 0.00999999977648 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.019999999553 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 2 | |
kernel_size: 1 | |
weight_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "upsample_2" | |
type: "Deconvolution" | |
bottom: "score_dsn2" | |
top: "upscore_dsn2" | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 2 | |
kernel_size: 4 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "crop_dsn2" | |
type: "Crop" | |
bottom: "upscore_dsn2" | |
bottom: "data" | |
top: "crop_dsn2" | |
crop_param { | |
axis: 2 | |
offset: 35 | |
} | |
} | |
layer { | |
name: "loss2" | |
type: "BalanceSoftmaxWithLoss" | |
bottom: "crop_dsn2" | |
bottom: "label" | |
top: "dsn2_loss" | |
loss_param { | |
ignore_label: -1 | |
normalize: false | |
} | |
} | |
layer { | |
name: "score_dsn3" | |
type: "Convolution" | |
bottom: "conv3_3" | |
top: "score_dsn3" | |
param { | |
lr_mult: 0.00999999977648 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.019999999553 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 3 | |
kernel_size: 1 | |
weight_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "upsample_4" | |
type: "Deconvolution" | |
bottom: "score_dsn3" | |
top: "upscore_dsn3" | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 3 | |
kernel_size: 8 | |
stride: 4 | |
} | |
} | |
layer { | |
name: "crop_dsn3" | |
type: "Crop" | |
bottom: "upscore_dsn3" | |
bottom: "data" | |
top: "crop_dsn3" | |
crop_param { | |
axis: 2 | |
offset: 36 | |
} | |
} | |
layer { | |
name: "loss3" | |
type: "BalanceSoftmaxWithLoss" | |
bottom: "crop_dsn3" | |
bottom: "label" | |
top: "dsn3_loss" | |
loss_param { | |
ignore_label: -1 | |
normalize: false | |
} | |
} | |
layer { | |
name: "score_dsn4" | |
type: "Convolution" | |
bottom: "conv4_3" | |
top: "score_dsn4" | |
param { | |
lr_mult: 0.00999999977648 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.019999999553 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 4 | |
kernel_size: 1 | |
weight_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "upsample_8" | |
type: "Deconvolution" | |
bottom: "score_dsn4" | |
top: "upscore_dsn4" | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 4 | |
kernel_size: 16 | |
stride: 8 | |
} | |
} | |
layer { | |
name: "crop_dsn4" | |
type: "Crop" | |
bottom: "upscore_dsn4" | |
bottom: "data" | |
top: "crop_dsn4" | |
crop_param { | |
axis: 2 | |
offset: 38 | |
} | |
} | |
layer { | |
name: "loss4" | |
type: "BalanceSoftmaxWithLoss" | |
bottom: "crop_dsn4" | |
bottom: "label" | |
top: "dsn4_loss" | |
loss_param { | |
ignore_label: -1 | |
normalize: false | |
} | |
} | |
layer { | |
name: "score_dsn5" | |
type: "Convolution" | |
bottom: "conv5_3" | |
top: "score_dsn5" | |
param { | |
lr_mult: 0.00999999977648 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.019999999553 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 5 | |
kernel_size: 1 | |
weight_filler { | |
type: "constant" | |
value: 0.0 | |
} | |
} | |
} | |
layer { | |
name: "upsample_16" | |
type: "Deconvolution" | |
bottom: "score_dsn5" | |
top: "upscore_dsn5" | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
param { | |
lr_mult: 0.0 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 5 | |
kernel_size: 32 | |
stride: 16 | |
} | |
} | |
layer { | |
name: "crop_dsn5" | |
type: "Crop" | |
bottom: "upscore_dsn5" | |
bottom: "data" | |
top: "crop_dsn5" | |
crop_param { | |
axis: 2 | |
offset: 42 | |
} | |
} | |
layer { | |
name: "loss5" | |
type: "BalanceSoftmaxWithLoss" | |
bottom: "crop_dsn5" | |
bottom: "label" | |
top: "dsn5_loss" | |
loss_param { | |
ignore_label: -1 | |
normalize: false | |
} | |
} | |
layer { | |
name: "slice2" | |
type: "Slice" | |
bottom: "crop_dsn2" | |
top: "slice2_0" | |
top: "slice2_1" | |
slice_param { | |
slice_point: 1 | |
axis: 1 | |
} | |
} | |
layer { | |
name: "slice3" | |
type: "Slice" | |
bottom: "crop_dsn3" | |
top: "slice3_0" | |
top: "slice3_1" | |
top: "slice3_2" | |
slice_param { | |
slice_point: 1 | |
slice_point: 2 | |
axis: 1 | |
} | |
} | |
layer { | |
name: "slice4" | |
type: "Slice" | |
bottom: "crop_dsn4" | |
top: "slice4_0" | |
top: "slice4_1" | |
top: "slice4_2" | |
top: "slice4_3" | |
slice_param { | |
slice_point: 1 | |
slice_point: 2 | |
slice_point: 3 | |
axis: 1 | |
} | |
} | |
layer { | |
name: "slice5" | |
type: "Slice" | |
bottom: "crop_dsn5" | |
top: "slice5_0" | |
top: "slice5_1" | |
top: "slice5_2" | |
top: "slice5_3" | |
top: "slice5_4" | |
slice_param { | |
slice_point: 1 | |
slice_point: 2 | |
slice_point: 3 | |
slice_point: 4 | |
axis: 1 | |
} | |
} | |
layer { | |
name: "concat0" | |
type: "Concat" | |
bottom: "slice2_0" | |
bottom: "slice3_0" | |
bottom: "slice4_0" | |
bottom: "slice5_0" | |
top: "concat0" | |
concat_param { | |
concat_dim: 1 | |
} | |
} | |
layer { | |
name: "concat1" | |
type: "Concat" | |
bottom: "slice2_1" | |
bottom: "slice3_1" | |
bottom: "slice4_1" | |
bottom: "slice5_1" | |
top: "concat1" | |
concat_param { | |
concat_dim: 1 | |
} | |
} | |
layer { | |
name: "concat2" | |
type: "Concat" | |
bottom: "slice3_2" | |
bottom: "slice4_2" | |
bottom: "slice5_2" | |
top: "concat2" | |
concat_param { | |
concat_dim: 1 | |
} | |
} | |
layer { | |
name: "concat3" | |
type: "Concat" | |
bottom: "slice4_3" | |
bottom: "slice5_3" | |
top: "concat3" | |
concat_param { | |
concat_dim: 1 | |
} | |
} | |
layer { | |
name: "cat0_score" | |
type: "Convolution" | |
bottom: "concat0" | |
top: "concat0_score" | |
param { | |
lr_mult: 0.0500000007451 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.00200000009499 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 1 | |
kernel_size: 1 | |
weight_filler { | |
type: "constant" | |
value: 0.25 | |
} | |
} | |
} | |
layer { | |
name: "cat1_score" | |
type: "Convolution" | |
bottom: "concat1" | |
top: "concat1_score" | |
param { | |
lr_mult: 0.0500000007451 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.00200000009499 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 1 | |
kernel_size: 1 | |
weight_filler { | |
type: "constant" | |
value: 0.25 | |
} | |
} | |
} | |
layer { | |
name: "cat2_score" | |
type: "Convolution" | |
bottom: "concat2" | |
top: "concat2_score" | |
param { | |
lr_mult: 0.00999999977648 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.00200000009499 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 1 | |
kernel_size: 1 | |
weight_filler { | |
type: "constant" | |
value: 0.333000004292 | |
} | |
} | |
} | |
layer { | |
name: "cat3_score" | |
type: "Convolution" | |
bottom: "concat3" | |
top: "concat3_score" | |
param { | |
lr_mult: 0.0500000007451 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.00200000009499 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 1 | |
kernel_size: 1 | |
weight_filler { | |
type: "constant" | |
value: 0.5 | |
} | |
} | |
} | |
layer { | |
name: "cat4_score" | |
type: "Convolution" | |
bottom: "slice5_4" | |
top: "concat4_score" | |
param { | |
lr_mult: 0.0500000007451 | |
decay_mult: 1.0 | |
} | |
param { | |
lr_mult: 0.00200000009499 | |
decay_mult: 0.0 | |
} | |
convolution_param { | |
num_output: 1 | |
kernel_size: 1 | |
weight_filler { | |
type: "constant" | |
value: 1.0 | |
} | |
} | |
} | |
layer { | |
name: "concat_fuse" | |
type: "Concat" | |
bottom: "concat0_score" | |
bottom: "concat1_score" | |
bottom: "concat2_score" | |
bottom: "concat3_score" | |
bottom: "concat4_score" | |
top: "concat_fuse" | |
concat_param { | |
concat_dim: 1 | |
} | |
} | |
layer { | |
name: "loss" | |
type: "BalanceSoftmaxWithLoss" | |
bottom: "concat_fuse" | |
bottom: "label" | |
top: "fuse_loss" | |
loss_param { | |
ignore_label: -1 | |
normalize: false | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment