Last active
August 11, 2017 12:08
-
-
Save zeakey/c106f9ec075c667caca5566db42f07ae to your computer and use it in GitHub Desktop.
Python script for automatically generating HED(https://github.com/s9xie/hed) network, compatitable with newest caffe(https://github.com/bvlc/caffe)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys, os | |
sys.path.insert(0, 'path/to/caffe/python') | |
import caffe | |
from caffe import layers as L, params as P | |
from caffe.coord_map import crop | |
import numpy as np | |
def conv_relu(bottom, nout, ks=3, stride=1, pad=1, mult=[1,1,2,0]): | |
conv = L.Convolution(bottom, kernel_size=ks, stride=stride, | |
num_output=nout, pad=pad, weight_filler=dict(type='xavier'), | |
param=[dict(lr_mult=mult[0], decay_mult=mult[1]), dict(lr_mult=mult[2], decay_mult=mult[3])]) | |
return conv, L.ReLU(conv, in_place=True) | |
def max_pool(bottom, ks=2, stride=2): | |
return L.Pooling(bottom, pool=P.Pooling.MAX, kernel_size=ks, stride=stride) | |
def full_conv(bottom, name, lr): | |
return L.Convolution(bottom, name=name, kernel_size=1,num_output=1,# weight_filler=dict(type='xavier'), | |
param=[dict(lr_mult=0.01*lr, decay_mult=1), dict(lr_mult=0.02*lr, decay_mult=0)]) | |
def fcn(split): | |
n = caffe.NetSpec() | |
n.data = L.Input(name = 'data', input_param=dict(shape=dict(dim=[1,3,500,500]))) | |
if split=='train': | |
n.label = L.Input(name='label', input_param=dict(shape=dict(dim=[1,1,500,500]))) | |
n.conv1_1, n.relu1_1 = conv_relu(n.data, 64, pad=100) | |
n.conv1_2, n.relu1_2 = conv_relu(n.relu1_1, 64) | |
n.pool1 = max_pool(n.relu1_2) | |
n.conv2_1, n.relu2_1 = conv_relu(n.pool1, 128) | |
n.conv2_2, n.relu2_2 = conv_relu(n.relu2_1, 128) | |
n.pool2 = max_pool(n.relu2_2) | |
n.conv3_1, n.relu3_1 = conv_relu(n.pool2, 256) | |
n.conv3_2, n.relu3_2 = conv_relu(n.relu3_1, 256) | |
n.conv3_3, n.relu3_3 = conv_relu(n.relu3_2, 256) | |
n.pool3 = max_pool(n.relu3_3) | |
n.conv4_1, n.relu4_1 = conv_relu(n.pool3, 512) | |
n.conv4_2, n.relu4_2 = conv_relu(n.relu4_1, 512) | |
n.conv4_3, n.relu4_3 = conv_relu(n.relu4_2, 512) | |
n.pool4 = max_pool(n.relu4_3) | |
n.conv5_1, n.relu5_1 = conv_relu(n.pool4, 512, mult=[100,1,200,0]) | |
n.conv5_2, n.relu5_2 = conv_relu(n.relu5_1, 512, mult=[100,1,200,0]) | |
n.conv5_3, n.relu5_3 = conv_relu(n.relu5_2, 512, mult=[100,1,200,0]) | |
# DSN1 | |
n.score_dsn1=full_conv(n.conv1_2, 'score-dsn1', lr=1) | |
n.upscore_dsn1 = crop(n.score_dsn1, n.data) | |
if split=='train': | |
n.loss1 = L.SigmoidCrossentropyLoss(n.upscore_dsn1, n.label) | |
if split=='test': | |
n.sigmoid_dsn1 = L.Sigmoid(n.upscore_dsn1) | |
# n.sigmoid_dsn1 = L.Sigmoid(n.upscore_dsn1) | |
# DSN2 | |
n.score_dsn2=full_conv(n.conv2_2, 'score-dsn2', lr=1) | |
n.score_dsn2_up = L.Deconvolution(n.score_dsn2, name='upsample_2', | |
convolution_param=dict(num_output=1, kernel_size=4, stride=2), | |
param=[dict(lr_mult=0, decay_mult=1), dict(lr_mult=0, decay_mult=0)]) | |
n.upscore_dsn2 = crop(n.score_dsn2_up, n.data) | |
if split=='train': | |
n.loss2 = L.SigmoidCrossentropyLoss(n.upscore_dsn2, n.label) | |
if split=='test': | |
n.sigmoid_dsn2 = L.Sigmoid(n.upscore_dsn2) | |
# n.sigmoid_dsn2 = L.Sigmoid(n.upscore_dsn2) | |
# DSN3 | |
n.score_dsn3=full_conv(n.conv3_3, 'score-dsn3', lr=1) | |
n.score_dsn3_up = L.Deconvolution(n.score_dsn3, name='upsample_4', | |
convolution_param=dict(num_output=1, kernel_size=8, stride=4), | |
param=[dict(lr_mult=0, decay_mult=1), dict(lr_mult=0, decay_mult=0)]) | |
n.upscore_dsn3 = crop(n.score_dsn3_up, n.data) | |
if split=='train': | |
n.loss3 = L.SigmoidCrossentropyLoss(n.upscore_dsn3, n.label) | |
if split=='test': | |
n.sigmoid_dsn3 = L.Sigmoid(n.upscore_dsn3) | |
# n.sigmoid_dsn3 = L.Sigmoid(n.upscore_dsn3) | |
# DSN4 | |
n.score_dsn4=full_conv(n.conv4_3, 'score-dsn4', lr=1) | |
n.score_dsn4_up = L.Deconvolution(n.score_dsn4, name='upsample_8', | |
convolution_param=dict(num_output=1, kernel_size=16, stride=8), | |
param=[dict(lr_mult=0, decay_mult=1), dict(lr_mult=0, decay_mult=0)]) | |
n.upscore_dsn4 = crop(n.score_dsn4_up, n.data) | |
if split=='train': | |
n.loss4 = L.SigmoidCrossentropyLoss(n.upscore_dsn4, n.label) | |
if split=='test': | |
n.sigmoid_dsn4 = L.Sigmoid(n.upscore_dsn4) | |
# n.sigmoid_dsn4 = L.Sigmoid(n.upscore_dsn4) | |
# DSN5 | |
n.score_dsn5=full_conv(n.conv5_3, 'score-dsn5', lr=1) | |
n.score_dsn5_up = L.Deconvolution(n.score_dsn5, name='upsample_16', | |
convolution_param=dict(num_output=1, kernel_size=32, stride=16), | |
param=[dict(lr_mult=0, decay_mult=1), dict(lr_mult=0, decay_mult=0)]) | |
n.upscore_dsn5 = crop(n.score_dsn5_up, n.data) | |
if split=='train': | |
n.loss5 = L.SigmoidCrossentropyLoss(n.upscore_dsn5, n.label) | |
if split=='test': | |
n.sigmoid_dsn5 = L.Sigmoid(n.upscore_dsn5) | |
# n.sigmoid_dsn5 = L.Sigmoid(n.upscore_dsn5) | |
# concat and fuse | |
n.concat_upscore = L.Concat(n.upscore_dsn1, | |
n.upscore_dsn2, | |
n.upscore_dsn3, | |
n.upscore_dsn4, | |
n.upscore_dsn5, | |
name='concat', concat_param=dict({'concat_dim':1})) | |
n.upscore_fuse = L.Convolution(n.concat_upscore, name='new-score-weighting', | |
num_output=1, kernel_size=1, | |
param=[dict(lr_mult=0.001, decay_mult=1), dict(lr_mult=0.002, decay_mult=0)], | |
weight_filler=dict(type='constant', value=0.2)) | |
if split=='test': | |
n.sigmoid_fuse = L.Sigmoid(n.upscore_fuse) | |
if split=='train': | |
n.loss_fuse = L.SigmoidCrossentropyLoss(n.upscore_fuse, n.label) | |
return n.to_proto() | |
def make_net(): | |
with open('hed_train.pt', 'w') as f: | |
f.writelines(os.linesep+'force_backward: true'+os.linesep) | |
f.write(str(fcn('train'))) | |
with open('hed_test.pt', 'w') as f: | |
f.write(str(fcn('test'))) | |
def make_solver(): | |
sp = {} | |
sp['net'] = '"train.pt"' | |
sp['base_lr'] = '0.001' | |
sp['lr_policy'] = '"step"' | |
sp['momentum'] = '0.9' | |
sp['weight_decay'] = '0.0002' | |
sp['iter_size'] = '10' | |
sp['stepsize'] = '1000' | |
sp['display'] = '20' | |
sp['snapshot'] = '100000' | |
sp['snapshot_prefix'] = '"net"' | |
sp['gamma'] = '0.1' | |
sp['max_iter'] = '100000' | |
sp['solver_mode'] = 'CPU' | |
f = open('solver.pt', 'w') | |
for k, v in sorted(sp.items()): | |
if not(type(v) is str): | |
raise TypeError('All solver parameters must be strings') | |
f.write('%s: %s\n'%(k, v)) | |
f.close() | |
if __name__ == '__main__': | |
make_net() | |
make_solver() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment