Created
March 15, 2017 10:53
-
-
Save zelinskiy/dcefefcdd7d6223e65bf6755c98ea202 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| {-# LANGUAGE GADTs #-} | |
| {-# LANGUAGE TypeFamilies #-} | |
| {-# LANGUAGE ExplicitForAll #-} | |
| {-# LANGUAGE TypeOperators #-} | |
| data Eql a b where | |
| Refl :: Eql a a | |
| --Нужно для протаскивания Рефла | |
| cong :: Eql a b -> Eql (f a) (f b) | |
| cong Refl = Refl | |
| --Заданы такие типы | |
| data Z | |
| data S n | |
| data SNat n where | |
| Zero :: SNat Z | |
| Succ :: SNat n -> SNat (S n) | |
| --С операцией сложения | |
| type family Add m n | |
| type instance Add Z n = n | |
| type instance Add (S m) n = S (Add m n) | |
| add :: SNat n -> SNat m -> SNat (Add n m) | |
| add Zero m = m | |
| add (Succ n) m = Succ (add n m) | |
| --Доказать, что ноль является левой и правой единицей относительно сложения | |
| -- ∀n. 0 + suc n = suc n | |
| plus_suc :: forall n. SNat n | |
| -> Eql (Add Z (S n)) (S n) | |
| plus_suc Zero = Refl | |
| plus_suc (Succ n) = cong (plus_suc n) | |
| -- ∀n. 0 + n = n | |
| plus_zero :: forall n. SNat n | |
| -> Eql (Add Z n) n | |
| plus_zero Zero = Refl | |
| plus_zero (Succ n) = cong (plus_zero n) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment