Skip to content

Instantly share code, notes, and snippets.

@zeroeth
Forked from mvarela/binVis2d.r
Created January 20, 2020 06:08
Show Gist options
  • Save zeroeth/731436487263ee8e46f2b257e444aaae to your computer and use it in GitHub Desktop.
Save zeroeth/731436487263ee8e46f2b257e444aaae to your computer and use it in GitHub Desktop.
This is the code used in my blog post about binary data visualization. Feel free to use it as you see fit.
library(tidyverse)
# binviz Veles-like binary visualizaiton
binViz2d <- function(filename, alpha = 1/100, maxsize = 5000000,
save = TRUE, polar = FALSE, sample = FALSE,
sample_size = 2000000, do_density = FALSE){
# setting dens_plot as NA simplifies the logic below a bit
dens_plot = NA
# we read the file as a stream of bytes, and prepare our tibble
# We'll add a column indexing the trigram position in the file
# This will come in handy later if we want to facet the plot by position
# as done in the Veles article. We'll just mutate binViz here, to save memory.
rawdata <- readBin(filename, integer(), n=maxsize, size = 1, signed = FALSE)
size <- rawdata %>% as.tibble %>% nrow
binViz <- cbind(0:(size - 1),rawdata, lead(rawdata), lead(rawdata,n=2L))
colnames(binViz) <- c('idx', 'x', 'y', 'z')
# We then remove any missing values from the dataset
toplot <- binViz %>% as.tibble %>% na.omit
# If sampling is required, we do it now. Sampling is important
# if doing the density plots, as going beyond 1M points gets SLOW
if(sample){
toplot <- toplot %>% sample_n(min(count(toplot), sample_size))
}
# The actual plotting
theplot <- binViz2d_do_plot(toplot, alpha, polar) +
ggtitle(title_spec(filename, sample, sample_size))
if(do_density){
dens_plot <- binViz2d_do_density_plot(toplot, polar)
}
# Saving the plots
if(save){
namespec <- name_spec(filename, sample, sample_size, polar)
binViz2d_save(namespec, theplot, dens_plot)
}
return(list(binViz_plot = theplot, dens_plot = dens_plot))
}
binViz2d_do_plot <- function(data, alpha, polar){
theplot <- data %>% ggplot(mapping = aes(x,y)) +
geom_point(mapping = aes(color=z), alpha = alpha, size = 0.75) +
scale_color_gradient(low="blue", high="orange") +
coord_fixed(ratio = 1)+
labs(x="i", y="i+1", z="i+2")
if(polar){
theplot <- theplot + coord_polar()
}
return(theplot)
}
binViz2d_do_density_plot <- function(toplot, polar){
dens_plot <- toplot %>% ggplot(mapping = aes(x,y)) +
stat_density2d(aes(fill = ..density..), geom="raster", contour = FALSE) +
scale_fill_gradient(low="steelblue4", high="sienna2") +
coord_fixed(ratio = 1)+
labs(x="i", y="i+1")
return(dens_plot)
}
title_spec <- function(name, sampled, nsamples){
if(sampled){
title <- paste(name, "-", nsamples, "samples.")
}else{
title <- name
}
return(title)
}
# We create a name separated by underscores, this simplifies later parsing
# of file names, if needed, to automate e.g., reports creation
name_spec <- function(name, sampled, nsamples, polar){
polar_str <- ""
if(polar){
polar_str <- "polar"
}
sampled_str <- ""
if(sampled){
sampled_str <- paste("sampled", nsamples, sep="_")
}
basename <- chartr('/.', '::',
paste("plot", polar_str, sampled_str, name, sep = "_"))
return(paste(basename, ".png", sep=""))
}
binViz2d_save <- function(namespec, binViz_plot, dens_plot){
png(namespec, width = 15, height = 15, units = "cm", res = 300)
print(binViz_plot)
dev.off()
if(!is.na(dens_plot)){
png(paste("density",namespec,sep="_"), width = 15, height = 15,
units = "cm", res = 300)
print(dens_plot)
dev.off()
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment