-
-
Save zeryx/1a786f2041d840f08175ea19b741b68f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.utils.data import DataLoader | |
from torchvision import datasets, transforms | |
from flytekit import task, workflow, conditional, Resources | |
import torch as th | |
from torch import nn | |
@task | |
def get_dataset(training: bool, gpu: bool = False) -> DataLoader: | |
print("GPU Enabled: " + str(gpu)) | |
dataset = datasets.MNIST("/tmp/mnist", train=training, download=True, transform=transforms.ToTensor()) | |
if gpu: | |
dataloader = DataLoader(dataset, batch_size=64, shuffle=True, pin_memory_device="cuda", pin_memory=True) | |
else: | |
dataloader = DataLoader(dataset, batch_size=64, shuffle=True) | |
return dataloader | |
def get_model_architecture() -> (th.nn.Sequential, th.optim.Optimizer): | |
model = nn.Sequential( | |
nn.Conv2d(1, 16, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2), | |
nn.Conv2d(16, 32, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2), | |
nn.Flatten(), | |
nn.Linear(32 * 7 * 7, 128), | |
nn.ReLU(), | |
nn.Linear(128, 10) | |
) | |
optimizer = th.optim.SGD(model.parameters(), lr=0.003, momentum=0.9) | |
return model, optimizer | |
@task(requests=Resources(cpu="2", mem="10Gi")) | |
def train_model_cpu(dataset: DataLoader, n_epochs: int) -> th.nn.Sequential: | |
model, optim = get_model_architecture() | |
return train_model(model=model, optim=optim, dataset=dataset, n_epochs=n_epochs) | |
@task(requests=Resources(gpu="1", mem="10Gi")) | |
def train_model_gpu(dataset: DataLoader, n_epochs: int) -> th.nn.Sequential: | |
model, optim = get_model_architecture() | |
return train_model(model=model, optim=optim, dataset=dataset, n_epochs=n_epochs) | |
def train_model(model: th.nn.Sequential, optim: th.optim.Optimizer, dataset: DataLoader, n_epochs: int) -> th.nn.Sequential: | |
if th.cuda.is_available(): | |
model.to("cuda").train() | |
else: | |
model.train() | |
for epoch in range(n_epochs): | |
for data, target in dataset: | |
if th.cuda.is_available(): | |
data, target = data.to("cuda"), target.to("cuda") | |
optim.zero_grad() | |
output = model.forward(data) | |
loss = th.nn.functional.nll_loss(output, target) | |
loss.backward() | |
optim.step() | |
return model | |
@task(requests=Resources(cpu="2", mem="10Gi")) | |
def validation_loss(model: th.nn.Sequential, dataset: DataLoader) -> str: | |
model.to("cpu").eval() | |
losses = [] | |
with torch.no_grad(): | |
for data, target in dataset: | |
data, target = data.to("cpu"), target.to("cpu") | |
output = model.forward(data) | |
loss = th.nn.functional.nll_loss(output, target) | |
losses.append(loss.item()) | |
loss = 0 | |
for l in losses: | |
loss += l | |
loss = loss / len(losses) | |
return "NLL model loss in test set: " + str(loss) | |
@workflow | |
def train_mnist_model(n_epoch: int = 10, gpu_enabled: bool =False) -> str: | |
training_dataset = get_dataset(training=True, gpu=gpu_enabled) | |
test_dataset = get_dataset(training=False, gpu=gpu_enabled) | |
trained_model = (conditional("Gpu Acceleration") | |
.if_((gpu_enabled==True)) | |
.then(train_model_gpu(dataset=training_dataset, n_epochs=n_epoch)) | |
.else_() | |
.then(train_model_cpu(dataset=training_dataset, n_epochs=n_epoch)) | |
) | |
output = validation_loss(model=trained_model, dataset=test_dataset) | |
return output | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch.utils.data import DataLoader | |
from torchvision import datasets, transforms | |
from flytekit import task, workflow, conditional, Resources | |
import torch as th | |
from torch import nn | |
@task | |
def get_dataset(training: bool, gpu: bool = False) -> DataLoader: | |
print("GPU Enabled: " + str(gpu)) | |
dataset = datasets.MNIST("/tmp/mnist", train=training, download=True, transform=transforms.ToTensor()) | |
if gpu: | |
dataloader = DataLoader(dataset, batch_size=64, shuffle=True, pin_memory_device="cuda", pin_memory=True) | |
else: | |
dataloader = DataLoader(dataset, batch_size=64, shuffle=True) | |
return dataloader | |
def get_model_architecture() -> (th.nn.Sequential, th.optim.Optimizer): | |
model = nn.Sequential( | |
nn.Conv2d(1, 16, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2), | |
nn.Conv2d(16, 32, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2), | |
nn.Flatten(), | |
nn.Linear(32 * 7 * 7, 128), | |
nn.ReLU(), | |
nn.Linear(128, 10) | |
) | |
optimizer = th.optim.SGD(model.parameters(), lr=0.003, momentum=0.9) | |
return model, optimizer | |
@task(requests=Resources(cpu="2", mem="10Gi")) | |
def train_model_cpu( n_epochs: int) -> th.nn.Sequential: | |
dataset = get_dataset(training=True, gpu=False) | |
model, optim = get_model_architecture() | |
return train_model(model=model, optim=optim, dataset=dataset, n_epochs=n_epochs) | |
@task(requests=Resources(gpu="1", mem="10Gi")) | |
def train_model_gpu(n_epochs: int) -> th.nn.Sequential: | |
dataset = get_dataset(training=True, gpu=True) | |
model, optim = get_model_architecture() | |
return train_model(model=model, optim=optim, dataset=dataset, n_epochs=n_epochs) | |
def train_model(model: th.nn.Sequential, optim: th.optim.Optimizer, dataset: DataLoader, n_epochs: int) -> th.nn.Sequential: | |
if th.cuda.is_available(): | |
model.to("cuda").train() | |
else: | |
model.train() | |
for epoch in range(n_epochs): | |
for data, target in dataset: | |
if th.cuda.is_available(): | |
data, target = data.to("cuda"), target.to("cuda") | |
optim.zero_grad() | |
output = model.forward(data) | |
loss = th.nn.functional.nll_loss(output, target) | |
loss.backward() | |
optim.step() | |
return model | |
@task(requests=Resources(cpu="2", mem="10Gi")) | |
def validation_loss(model: th.nn.Sequential, dataset: DataLoader) -> str: | |
model.to("cpu").eval() | |
losses = [] | |
with torch.no_grad(): | |
for data, target in dataset: | |
data, target = data.to("cpu"), target.to("cpu") | |
output = model.forward(data) | |
loss = th.nn.functional.nll_loss(output, target) | |
losses.append(loss.item()) | |
loss = 0 | |
for l in losses: | |
loss += l | |
loss = loss / len(losses) | |
return "NLL model loss in test set: " + str(loss) | |
@workflow | |
def train_mnist_model(n_epoch: int = 10, gpu_enabled: bool =False) -> str: | |
# training_dataset = get_dataset(training=True, gpu=gpu_enabled) | |
test_dataset = get_dataset(training=False, gpu=gpu_enabled) | |
trained_model = (conditional("Gpu Acceleration") | |
.if_((gpu_enabled==True)) | |
.then(train_model_gpu(n_epochs=n_epoch)) | |
.else_() | |
.then(train_model_cpu( n_epochs=n_epoch)) | |
) | |
output = validation_loss(model=trained_model, dataset=test_dataset) | |
return output | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment