Created
August 14, 2014 06:15
-
-
Save zhangce/44bd80968cf3df3a55f8 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| push!(LOAD_PATH, "/Users/czhang/Desktop/Projects/dw_/julia/") | |
| import DimmWitted | |
| DimmWitted.set_libpath("/Users/czhang/Desktop/Projects/dw_/libdw_julia") | |
| ###################################### | |
| # The following function creates a | |
| # synthetic data set: | |
| # - Data type is Cdouble | |
| # - Modle type is Array{Cdouble} | |
| # | |
| nexp = 100000 | |
| nfeat = 1024 | |
| examples = Array(Cdouble, nexp, nfeat+1) | |
| for row = 1:nexp | |
| for col = 1:nfeat | |
| examples[row, col] = 1 | |
| end | |
| if rand() > 0.8 | |
| examples[row, nfeat+1] = 0 | |
| else | |
| examples[row, nfeat+1] = 1 | |
| end | |
| end | |
| model = Cdouble[0 for i = 1:nfeat] | |
| ###################################### | |
| # Define the loss function and gradient | |
| # function for logistic regression | |
| # | |
| function loss(row::Array{Cdouble,1}, model::Array{Cdouble,1}) | |
| @inbounds begin | |
| const label = row[length(row)] | |
| const nfeat = length(model) | |
| d = 0.0 | |
| for i = 1:nfeat | |
| d = row[i]*model[i] | |
| end | |
| e = log(exp(d)+1.0) | |
| end | |
| return (-label * d + log(exp(d) + 1.0)) | |
| end | |
| function grad(row::Array{Cdouble,1}, model::Array{Cdouble,1}) | |
| @inbounds begin | |
| const label = row[length(row)] | |
| const nfeat = length(model) | |
| d = 0.0 | |
| for i = 1:nfeat | |
| d = row[i]*model[i] | |
| end | |
| d = exp(-d) | |
| Z = 0.00001 * (-label + 1.0/(1.0+d)) | |
| for i = 1:nfeat | |
| model[i] = model[i] - row[i] * Z | |
| end | |
| end | |
| return 1.0 | |
| end | |
| ###################################### | |
| # Create a DimmWitted object using data | |
| # and model. You do not need to specify | |
| # the type, they are infer'ed by the | |
| # open() function, which is parametric. | |
| # | |
| DimmWitted.open(examples, model) | |
| ###################################### | |
| # Register functions. | |
| # | |
| handle_loss = DimmWitted.register_row(loss) | |
| handle_grad = DimmWitted.register_row(grad) | |
| ###################################### | |
| # Run 10 epoches. | |
| # | |
| for iepoch = 1:10 | |
| rs = DimmWitted.exec(handle_loss) | |
| println("LOSS: ", rs/nexp) | |
| rs = DimmWitted.exec(handle_grad) | |
| end | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment