Last active
July 19, 2017 03:21
-
-
Save zhangxiaoli73/cca1f3594dcadd27eb6a9152131bacf9 to your computer and use it in GitHub Desktop.
Train url detection
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Copyright 2016 The BigDL Authors. | |
* | |
* Licensed under the Apache License, Version 2.0 (the "License"); | |
* you may not use this file except in compliance with the License. | |
* You may obtain a copy of the License at | |
* | |
* http://www.apache.org/licenses/LICENSE-2.0 | |
* | |
* Unless required by applicable law or agreed to in writing, software | |
* distributed under the License is distributed on an "AS IS" BASIS, | |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
* See the License for the specific language governing permissions and | |
* limitations under the License. | |
*/ | |
package com.intel.analytics.bigdl.models.rnn | |
import breeze.linalg.* | |
import com.intel.analytics.bigdl._ | |
import com.intel.analytics.bigdl.dataset.{DataSet, MiniBatch, Sample, SampleToBatch} | |
import com.intel.analytics.bigdl.nn._ | |
import com.intel.analytics.bigdl.optim.{Adagrad, Loss, Optimizer, Trigger} | |
import com.intel.analytics.bigdl.tensor.{Storage, Tensor} | |
import com.intel.analytics.bigdl.utils.{Engine, T} | |
import org.apache.log4j.{Level, Logger} | |
import org.apache.spark.SparkContext | |
import org.apache.spark.mllib.tree.model.Split | |
import scala.util.Random | |
object Url { | |
Logger.getLogger("org").setLevel(Level.ERROR) | |
Logger.getLogger("akka").setLevel(Level.ERROR) | |
Logger.getLogger("breeze").setLevel(Level.ERROR) | |
Logger.getLogger("com.intel.analytics.bigdl.optim").setLevel(Level.INFO) | |
val logger = Logger.getLogger(getClass) | |
def main(args: Array[String]): Unit = { | |
val conf = Engine.createSparkConf() | |
.setAppName("Train url detection on text") | |
.set("spark.task.maxFailures", "1") | |
val sc = new SparkContext(conf) | |
Engine.init | |
val totalLength = 13568 | |
val inputSize = 36 | |
val class_num = 2 | |
val batchSize = if (args.length > 0) { | |
args(0).toInt | |
} else { | |
32 * 28 * 4 | |
} | |
val model = if ((args.length > 1) && (args(1) == "rnn")) { | |
println("use buildRNN") | |
buildRNN(class_num, inputSize) | |
} else { | |
println("use lstm 111") | |
buildModel(class_num, inputSize) | |
} | |
val times = 200 | |
val data = Array.tabulate(totalLength)(_ => Sample[Float]()) | |
val featureSize = Array(times, inputSize) | |
val labelSize = Array(1) | |
val label = Array(2.0f) | |
var i = 0 | |
while (i < totalLength) { | |
val feature = Tensor[Float](times, inputSize).apply1(e => Random.nextFloat()) | |
data(i).set(feature.storage().array(), label, featureSize, labelSize) | |
i += 1 | |
} | |
val max_epoch = 20 | |
val state = T("learningRate" -> 0.01, "learningRateDecay" -> 0.0002) | |
val trainSet = sc.parallelize(data, Engine.nodeNumber()) | |
val optimizer = Optimizer( | |
model = model, | |
sampleRDD = trainSet, | |
criterion = ClassNLLCriterion[Float](), | |
batchSize | |
) | |
optimizer.setState(state) | |
.setOptimMethod(new Adagrad()) | |
.setEndWhen(Trigger.maxEpoch(max_epoch)) | |
.optimize() | |
} | |
def buildModel(class_num: Int = 2, vec_dim: Int = 36): Module[Float] = { | |
val model = Sequential[Float]() | |
model.add(Recurrent[Float]() | |
.add(LSTM[Float](vec_dim, 20))) | |
.add(Select[Float](2, -1)) | |
.add(Linear[Float](20, class_num)) | |
.add(LogSoftMax[Float]()) | |
model | |
} | |
def buildRNN(class_num: Int = 2, vec_dim: Int = 36): Module[Float] = { | |
val model = Sequential[Float]() | |
model.add(Recurrent[Float]() | |
.add(RnnCell[Float](vec_dim, 20, Tanh()))) | |
.add(Select[Float](2, -1)) | |
.add(Linear[Float](20, class_num)) | |
.add(LogSoftMax[Float]()) | |
model | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment