Skip to content

Instantly share code, notes, and snippets.

@zhangxiaoli73
Created November 22, 2017 10:06
Show Gist options
  • Save zhangxiaoli73/f04f3637e0e0fd58cb76a9ad5879799d to your computer and use it in GitHub Desktop.
Save zhangxiaoli73/f04f3637e0e0fd58cb76a9ad5879799d to your computer and use it in GitHub Desktop.
package com.intel.analytics.bigdl.example
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.nn.Module
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.utils.Engine
import org.apache.hadoop.fs.Path
import org.apache.spark.SparkContext
import org.apache.spark.sql.SparkSession
import scala.collection.mutable.ArrayBuffer
object DeepSpeechPerf {
var warmup = 10
var iterations = 5
def main(args: Array[String]): Unit = {
val modelPath = "../model" // args(0)
val uttLen = 3000
val batchSize = 1
val input = Tensor[Float](batchSize, 1, 13, uttLen).rand()
val labels = Tensor[Float](batchSize, uttLen / 3).fill(1.0f)
val conf = Engine.createSparkConf()
.setAppName("test deepspeech 2 on text")
.set("spark.task.maxFailures", "1")
val sc = new SparkContext(conf)
Engine.init
val model = DeepSpeech2ModelLoader.loadModel(sc, modelPath)
println(model)
run(model, input)
}
def getTopTimes(times: Array[(AbstractModule[_ <: Activity, _ <: Activity, Float],
Long, Long)], allSum: Long): Unit = {
var forwardSum = 0L
var backwardSum = 0L
times.foreach(x => {
forwardSum += x._2
backwardSum += x._3
})
println(s"forwardSum = ${forwardSum}", s"backwardSum = ${backwardSum}")
val timeBuffer = new ArrayBuffer[(AbstractModule[_ <: Activity,
_ <: Activity, Float], Long, Long, Double)]
var i = 0
while (i < times.length) {
val rate = times(i)._2.toDouble/ allSum
timeBuffer.append((times(i)._1, times(i)._2, times(i)._3, rate))
i += 1
}
val sortData = timeBuffer.sortBy(a => a._4)
println("111111111111111111 ")
sortData.foreach(println)
}
def run(model: Module[Float], input: Tensor[Float]): Unit = {
println("start warm up")
for (i <- 0 to warmup) {
println(i)
model.forward(input)
}
println("start run iterations")
val s1 = System.nanoTime()
for (i <- 0 to iterations) {
val s1 = System.nanoTime()
model.forward(input)
val end1 = System.nanoTime() - s1
val tmp = model.getTimes()
getTopTimes(tmp, end1)
model.resetTimes()
}
// for (i <- 0 to iterations) {
// model.forward(input)
// }
val end1 = System.nanoTime() - s1
println("time " + end1/1e9 + " s")
}
}
@zhangxiaoli73
Copy link
Author

<!-- Another sample, using keys to authenticate.
<server>
  <id>siteServer</id>
  <privateKey>/path/to/private/key</privateKey>
  <passphrase>optional; leave empty if not used.</passphrase>
</server>
-->
alimaven aliyun maven http://maven.aliyun.com/nexus/content/groups/public/ central

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment