Created
November 22, 2017 10:06
-
-
Save zhangxiaoli73/f04f3637e0e0fd58cb76a9ad5879799d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package com.intel.analytics.bigdl.example | |
import com.intel.analytics.bigdl._ | |
import com.intel.analytics.bigdl.nn.Module | |
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity} | |
import com.intel.analytics.bigdl.tensor.Tensor | |
import com.intel.analytics.bigdl.utils.Engine | |
import org.apache.hadoop.fs.Path | |
import org.apache.spark.SparkContext | |
import org.apache.spark.sql.SparkSession | |
import scala.collection.mutable.ArrayBuffer | |
object DeepSpeechPerf { | |
var warmup = 10 | |
var iterations = 5 | |
def main(args: Array[String]): Unit = { | |
val modelPath = "../model" // args(0) | |
val uttLen = 3000 | |
val batchSize = 1 | |
val input = Tensor[Float](batchSize, 1, 13, uttLen).rand() | |
val labels = Tensor[Float](batchSize, uttLen / 3).fill(1.0f) | |
val conf = Engine.createSparkConf() | |
.setAppName("test deepspeech 2 on text") | |
.set("spark.task.maxFailures", "1") | |
val sc = new SparkContext(conf) | |
Engine.init | |
val model = DeepSpeech2ModelLoader.loadModel(sc, modelPath) | |
println(model) | |
run(model, input) | |
} | |
def getTopTimes(times: Array[(AbstractModule[_ <: Activity, _ <: Activity, Float], | |
Long, Long)], allSum: Long): Unit = { | |
var forwardSum = 0L | |
var backwardSum = 0L | |
times.foreach(x => { | |
forwardSum += x._2 | |
backwardSum += x._3 | |
}) | |
println(s"forwardSum = ${forwardSum}", s"backwardSum = ${backwardSum}") | |
val timeBuffer = new ArrayBuffer[(AbstractModule[_ <: Activity, | |
_ <: Activity, Float], Long, Long, Double)] | |
var i = 0 | |
while (i < times.length) { | |
val rate = times(i)._2.toDouble/ allSum | |
timeBuffer.append((times(i)._1, times(i)._2, times(i)._3, rate)) | |
i += 1 | |
} | |
val sortData = timeBuffer.sortBy(a => a._4) | |
println("111111111111111111 ") | |
sortData.foreach(println) | |
} | |
def run(model: Module[Float], input: Tensor[Float]): Unit = { | |
println("start warm up") | |
for (i <- 0 to warmup) { | |
println(i) | |
model.forward(input) | |
} | |
println("start run iterations") | |
val s1 = System.nanoTime() | |
for (i <- 0 to iterations) { | |
val s1 = System.nanoTime() | |
model.forward(input) | |
val end1 = System.nanoTime() - s1 | |
val tmp = model.getTimes() | |
getTopTimes(tmp, end1) | |
model.resetTimes() | |
} | |
// for (i <- 0 to iterations) { | |
// model.forward(input) | |
// } | |
val end1 = System.nanoTime() - s1 | |
println("time " + end1/1e9 + " s") | |
} | |
} |
Author
zhangxiaoli73
commented
Jun 23, 2019
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment