Created
November 1, 2017 02:40
-
-
Save zhenghaoz/f851ebc2676631ae3ef399c483026d43 to your computer and use it in GitHub Desktop.
K Means Algorithm Implementation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
from scipy.spatial import ConvexHull | |
class KMeans: | |
mean_vec = np.array([]) | |
X = np.array([]) | |
y = np.array([]) | |
clusters = [] | |
def fit(self, X, k, visual=False, epsilon=0.0001): | |
self.X = X | |
# Initialize mean vectors | |
self.mean_vec = X[np.random.randint(0, len(X), k)] | |
stop = False | |
iter = 0 | |
while not stop: | |
stop = True | |
# Clustering | |
self.y = np.empty([len(X)]) | |
for i in range(0, len(X)): | |
self.y[i] = np.argmin(np.linalg.norm(X[i] - self.mean_vec, axis=1)) | |
self.clusters = [] | |
for i in range(0, k): | |
self.clusters.append(self.X[np.where(np.equal(self.y, i))]) | |
# Visualization | |
if len(X[0]) == 2 and visual: | |
for cluster in self.clusters: | |
plt.plot(cluster[:, 0], cluster[:, 1], 'o') | |
if len(cluster) > 2: | |
hull = ConvexHull(cluster) | |
plt.plot(cluster[hull.vertices, 0], cluster[hull.vertices, 1], 'r--', lw=2) | |
plt.plot(cluster[hull.vertices[[-1, 0]], 0], cluster[hull.vertices[[-1, 0]], 1], 'r--') | |
plt.plot(self.mean_vec[:, 0], self.mean_vec[:, 1], 'r+') | |
plt.xlabel('密度') | |
plt.ylabel('含糖率') | |
plt.title('第%d次迭代之后' % iter) | |
plt.show() | |
# Update mean vectors | |
for i in range(0, k): | |
next_vec = np.mean(self.clusters[i], axis=0) | |
if np.linalg.norm(next_vec - self.mean_vec[i]) > epsilon: | |
self.mean_vec[i] = next_vec | |
stop = False | |
iter += 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment