Skip to content

Instantly share code, notes, and snippets.

View zhicongchen's full-sized avatar
🎯
Focusing

Zhicong Chen zhicongchen

🎯
Focusing
View GitHub Profile
@zhicongchen
zhicongchen / gensim_word2vec_procrustes_align.py
Last active June 3, 2024 01:54 — forked from quadrismegistus/gensim_word2vec_procrustes_align.py
Code for aligning two gensim word2vec models using Procrustes matrix alignment (updated for compatibility with Gensim 4.0 API). The code is modified from https://gist.github.com/quadrismegistus/09a93e219a6ffc4f216fb85235535faf, which is originally ported from HistWords by William Hamilton: https://github.com/williamleif/histwords
def smart_procrustes_align_gensim(base_embed, other_embed, words=None):
"""
Original script: https://gist.github.com/quadrismegistus/09a93e219a6ffc4f216fb85235535faf
Procrustes align two gensim word2vec models (to allow for comparison between same word across models).
Code ported from HistWords <https://github.com/williamleif/histwords> by William Hamilton <[email protected]>.
First, intersect the vocabularies (see `intersection_align_gensim` documentation).
Then do the alignment on the other_embed model.
Replace the other_embed model's syn0 and syn0norm numpy matrices with the aligned version.
Return other_embed.
from matplotlib import font_manager
fontprop = font_manager.FontProperties(fname='path\to\font\msyh.ttf')
plt.legend(prop=fontprop)
plt.xlabel('XXX',fontproperties=fontprop)
plt.ylabel('XXX',fontproperties=fontprop)
plt.title('XXX',fontproperties=fontprop)
# radius of gyration
from collections import Counter
import math
def radius_of_gyration(positions):
"""
position : tuple
A tuple (lat, lon) with the latitude and longitude of the antenna,
encoded as floating point numbers.
def plotDegreeDistribution(G):
from collections import defaultdict
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
degs = defaultdict(int)
for i in G.degree().values(): degs[i]+=1
items = sorted ( degs.items () )
x, y = np.array(items).T
y = [float(i) / sum(y) for i in y]