-
-
Save zhongwen/9029988 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class OnlineLearner(object): | |
def __init__(self, **kwargs): | |
self.last_misses = 0. | |
self.iratio = 0. | |
self.it = 1. | |
self.l = kwargs["l"] | |
self.max_ratio = -np.inf | |
self.threshold = 500. | |
def hinge_loss(self, vector, cls, weight): | |
p = self.predict(vector) | |
hl = max(0, weight-cls*p) | |
if hl >= weight: | |
self.last_misses += 1. | |
ir = hl/weight | |
self.iratio += ir | |
if self.max_ratio < ir: self.max_ratio = ir | |
self.it += 1 | |
if self.it % self.threshold == 0: | |
print str(type(self).__name__), | |
print "l", self.last_misses/self.threshold, "r", self.iratio/self.threshold, | |
print "m", self.max_ratio | |
self.max_ratio = self.last_misses = self.iratio = 0 | |
return hl | |
class Pegasos(OnlineLearner): | |
def __init__(self, **kwargs): | |
super(Pegasos, self).__init__(**kwargs) | |
self.w = Z(kwargs["dim"], dtype=np.float32) | |
self.learn = True | |
def update(self, vector, cls, weight): | |
eta_t = 1./(self.l*self.it) | |
loss = self.hinge_loss(vector, cls, weight) | |
if not self.learn: return | |
if loss > 0: | |
self.w = (1-eta_t*self.l)*self.w + eta_t*cls*vector | |
else: | |
self.w = (1-eta_t*self.l)*self.w | |
def predict(self, vector): | |
return np.dot(vector, self.w) | |
class KernelPegasos(OnlineLearner): | |
def __init__(self, **kw): | |
self.ws = [] | |
self.y = [] | |
super(KernelPegasos,self).__init__(**kw) | |
self.k = kw["kernel"] | |
self.learn = True | |
def update(self, vector, cls, weight): | |
loss = self.hinge_loss(vector, cls, weight) | |
if not self.learn: pass | |
if loss > 0: | |
self.ws.append(vector) | |
self.y.append(cls) | |
def predict(self, v): | |
return (1./(self.l*self.it))*sum(self.k(self.ws[i],v)*self.y[i] | |
for i in xrange(len(self.ws))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment