Last active
June 26, 2018 01:52
-
-
Save zhreshold/1a19b06548f69abca9aea0102a6a020d to your computer and use it in GitHub Desktop.
GluonCV Darknet 19
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Darknet(gluon.HybridBlock): | |
def __init__(self, spec, classes=1000, batch_norm=True, **kwargs): | |
super(Darknet, self).__init__(**kwargs) | |
filters = spec['filters'] | |
kernels = spec['kernels'] | |
with self.name_scope(): | |
self.features = nn.HybridSequential() | |
first_stage = True | |
for sf, sk in zip(filters, kernels): | |
if not first_stage: | |
# maxpool | |
self.features.add(nn.MaxPool2D(pool_size=2, strides=2)) | |
first_stage = False | |
for f, k in zip(sf, sk): | |
assert k in [1, 3], "Unexpected kernel size: {}".format(k) | |
pad = (k - 1) // 2 | |
self.features.add(nn.Conv2D(f, kernel_size=k, padding=pad)) | |
if batch_norm: | |
self.features.add(nn.BatchNorm()) | |
self.features.add(nn.LeakyReLu(0.1)) | |
# output | |
self.output = nn.Conv2D(classes, kernel_size=1, padding=0) | |
def hybrid_forward(self, F, x): | |
x = self.output(self.features(x)) | |
return F.Pooling(x, kernel=(7, 7), global_pool=True, pool_type='avg') | |
darknet_spec = { | |
19: { | |
'filters': [[32], [64], [128, 64, 128], [256, 128, 256], [512, 256, 512, 256, 512], [1024, 512, 1024, 512, 1024]] | |
'kernels': [[3], [3], [3, 1, 3], [3, 1, 3], [3, 1, 3, 1, 3], [3, 1, 3, 1, 3]]} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment