Created
January 24, 2018 05:01
-
-
Save zhreshold/26f98aada1e277661a6aa6cefde2f6a9 to your computer and use it in GitHub Desktop.
Weighted logistic regression output via mxnet custom operator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import mxnet as mx | |
class WeightedLogisticRegressionOutput(mx.operator.CustomOp): | |
""" | |
""" | |
def __init__(self, beta=0.5, lower=0.3, upper=0.7): | |
self._lower = lower | |
self._upper = upper | |
self._beta = beta | |
def forward(self, is_train, req, in_data, out_data, aux): | |
# logistic regression forward: take sigmoid | |
self.assign(out_data[0], req[0], mx.nd.sigmoid(in_data[0])) | |
def backward(self, req, out_grad, in_data, out_data, in_grad, aux): | |
# a normal logistic regression grad | |
# self.assign(in_grad[0], req[0], out_data[0] - in_data[1].reshape_like(out_data[0])) | |
out = out_data[0] | |
label = in_data[1].reshape_like(out) | |
in_grad = out_data[0] - label | |
# suppose labels are three kind: 0, 0.5, 1 | |
# for label == 0, prediction < 0.3, reduce grad | |
# for label == 1, prediction > 0.7, reduce grad | |
condition = (label < 0.5) * (out < self._lower) + (label > 0.5) * (out > self._upper) | |
# if beta -> 1, become normal logistic regression | |
weight = mx.nd.where(condition > 0, | |
mx.nd.abs(in_grad) ** (self._beta - 1), | |
mx.nd.ones_like(in_grad)) | |
self.assign(in_grad[0], req[0], in_grad * weight) | |
@mx.operator.register("weighted_logistic_regression_output") | |
class WeightedLogisticRegressionOutputProp(mx.Operator.CustomOpProp): | |
def __init__(self, beta=0.5, lower=0.3, upper=0.7): | |
super(WeightedLogisticRegressionOutputProp, self).__init__(need_top_grad=False) | |
self._beta = beta | |
self._lower = lower | |
self._upper = upper | |
def list_arguments(self): | |
return ['data', 'label'] | |
def list_outputs(self): | |
return ['output'] | |
def infer_shape(self, in_shape): | |
dshape = in_shape[0] | |
lshape = (in_shape[0][0],) | |
oshape = in_shape[0] | |
return [dshape, lshape], [oshape], [] | |
def create_operator(self, ctx, shapes, dtypes): | |
return WeightedLogisticRegressionOutput(beta=self._beta, lower=self._lower, upper=self._upper) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment