sudo nvidia-smi --gpu-reset -i 0
sudo fuser -v /dev/nvidia*
sudo fuser -k /dev/nvidia*
import mxnet as mx | |
class WeightedLogisticRegressionOutput(mx.operator.CustomOp): | |
""" | |
""" | |
def __init__(self, beta=0.5, lower=0.3, upper=0.7): | |
self._lower = lower | |
self._upper = upper |
import mxnet as mx | |
import numpy as np | |
import cv2 | |
def rotate_ndarray(arr, degree): | |
theta = np.pi / 180 * degree | |
cos = np.cos(theta) | |
sin = np.sin(theta) | |
loc = mx.nd.array([[cos, sin, -sin, cos, 0, 0]]) | |
s = 200 |
import argparse | |
import logging | |
import random | |
import time | |
import mxnet as mx | |
from mxnet import nd | |
from mxnet import image | |
from mxnet import gluon | |
from mxnet import autograd | |
import numpy as np |
import os | |
import argparse | |
import shutil | |
import time | |
import logging | |
import numpy as np | |
import mxnet as mx | |
from mxnet import gluon | |
from mxnet import autograd | |
from mxnet.gluon import nn |
import mxnet as mx | |
from mxnet import gluon | |
dataset = gluon.data.vision.MNIST() | |
loader = gluon.data.DataLoader(dataset, 34, last_batch='rollover', num_workers=8) | |
ctx = [mx.gpu(i) for i in range(2)] | |
for e in range(10): | |
for i, batch in enumerate(loader): | |
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx) |
git clone https://github.com/zhreshold/mxnet -b model_zoo | |
cd mxnet/example/gluon | |
sudo -H pip install -U mxnet-cu90 | |
python image_classification.py --dataseet --train-data ~/efs/users/joshuazz/data/imagenet/record/train_480_q95.rec --val-data ~/efs/users/joshuazz/data/imagenet/record/val_480_q95.rec --batch-size 64 --num-gpus 4 --epochs 120 --lr 0.1 --mode hybrid --model resnet50_v2 --log-interval 200 |
import argparse | |
import mxnet as mx | |
parser = argparse.ArgumentParser('test') | |
parser.add_argument('-j', '--num-workers', default=4, type=int, dest='num_workers') | |
args = parser.parse_args() | |
dataset = mx.gluon.data.vision.MNIST() | |
loader = mx.gluon.data.DataLoader(dataset, 32, True, num_workers=args.num_workers) |
Class | Pytorch | MXNet Gluon |
---|---|---|
Dataset holding arrays | torch.utils.data.TensorDataset(data_tensor, label_tensor) |
gluon.data.ArrayDataset(data_array, label_array) |
Data loader | torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=<function default_collate>, drop_last=False) |
gluon.data.DataLoader(dataset, batch_size=None, shuffle=False, sampler=None, last_batch='keep'(discard, rollover), batch_sampler=None, batchify_fn=None, num_workers=0) |
Sequentially applied sampler | torch.utils.data.sampler.SequentialSampler(data_source) |
gluon.data.SequentialSampler(length) |
Random order sampler | torch.utils.data.sampler.RandomSampler(data_source) |
gluon.data.RandomSampler(length) |
sudo apt update | |
sudo apt-get -y install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev libgfortran3 | |
wget 'https://developer.nvidia.com/compute/cuda/9.2/Prod2/local_installers/cuda_9.2.148_396.37_linux' -O cuda92.run | |
wget 'https://developer.nvidia.com/compute/cuda/9.2/Prod2/patches/1/cuda_9.2.148.1_linux' -O patch1.run | |
sudo sh cuda92.run | |
sudo sh patch1.run | |
echo "# CUDA9.2" >> ~/.bashrc | |
echo "export PATH=/usr/local/cuda/bin:\$PATH" >> ~/.bashrc | |
echo "export LD_LIBRARY_PATH=/usr/local/cuda/lib64:\$LD_LIBRARY_PATH" >> ~/.bashrc |