Last active
September 1, 2024 07:06
-
-
Save zioproto/a6f481f125317805d110e1f237f97ddc to your computer and use it in GitHub Desktop.
Streamlit chatbot powered by Azure OpenAI
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
MIT License | |
Copyright (c) 2023 Saverio Proto | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
""" | |
""" | |
create a ".env" file with the following: | |
OPENAI_API_TYPE = azure | |
OPENAI_API_VERSION = 2023-03-15-preview | |
OPENAI_API_BASE = 'https://eastus.api.cognitive.microsoft.com/' # Replace with the URL of an Azure OpenAI | |
OPENAI_API_KEY = '' # Replace with the corresponding API key | |
To run the application, use the following command: | |
streamlit run chatbot.py | |
""" | |
import os | |
import sys | |
import logging | |
from langchain.chat_models import AzureChatOpenAI | |
from langchain.embeddings import OpenAIEmbeddings | |
import streamlit as st | |
from llama_index import ( | |
download_loader, | |
SimpleDirectoryReader, | |
LLMPredictor, | |
GPTVectorStoreIndex, | |
PromptHelper, | |
ServiceContext, | |
StorageContext, | |
load_index_from_storage, | |
LangchainEmbedding | |
) | |
from llama_index.logger import LlamaLogger | |
from dotenv import load_dotenv, dotenv_values | |
logging.basicConfig(stream=sys.stdout, level=logging.INFO) | |
logging.getLogger("llama_index").setLevel(logging.DEBUG) | |
index = None | |
doc_path = "./data/" | |
index_file = "index.json" | |
if "config" not in st.session_state: | |
# Read the environment variables | |
load_dotenv() | |
config = dotenv_values(".env") | |
st.session_state.config = config | |
if "response" not in st.session_state: | |
st.session_state.response = "" | |
# save current file name to avoid reprocessing document | |
if "current_file" not in st.session_state: | |
st.session_state.current_file = None | |
def send_click(): | |
query_engine = index.as_query_engine() | |
# answer = query_engine.query(st.session_state.prompt) | |
# st.session_state.response = answer.get_formatted_sources() | |
st.session_state.response = query_engine.query(st.session_state.prompt) | |
st.session_state.lamalogs = service_context.llama_logger.get_logs() | |
st.title("Azure OpenAI Doc Chatbot") | |
sidebar_placeholder = st.sidebar.container() | |
uploaded_file = st.file_uploader("Choose a file") | |
# Create the chat llm | |
llm = AzureChatOpenAI( | |
deployment_name="gpt-35-turbo", | |
model_kwargs={ | |
"api_key": st.session_state.config["OPENAI_API_KEY"], | |
"api_base": st.session_state.config["OPENAI_API_BASE"], | |
"api_type": st.session_state.config["OPENAI_API_TYPE"], | |
"api_version": st.session_state.config["OPENAI_API_VERSION"], | |
}, | |
) | |
# Create the embedding llm | |
embedding_llm = LangchainEmbedding( | |
OpenAIEmbeddings( | |
model="text-embedding-ada-002", | |
deployment="text-embedding-ada-002", | |
openai_api_key=st.session_state.config["OPENAI_API_KEY"], | |
openai_api_base=st.session_state.config["OPENAI_API_BASE"], | |
openai_api_type=st.session_state.config["OPENAI_API_TYPE"], | |
openai_api_version=st.session_state.config["OPENAI_API_VERSION"], | |
), | |
embed_batch_size=1, | |
) | |
# Create llama_index LLMPredictor | |
llm_predictor = LLMPredictor(llm=llm) | |
max_input_size = 4096 | |
num_output = 256 | |
max_chunk_overlap = 20 | |
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) | |
llama_logger = LlamaLogger() | |
# Create llama_index ServiceContext | |
service_context = ServiceContext.from_defaults( | |
llm_predictor=llm_predictor, | |
prompt_helper=prompt_helper, | |
embed_model=embedding_llm, | |
chunk_size_limit=1000, | |
llama_logger=llama_logger | |
) | |
if uploaded_file and uploaded_file.name != st.session_state.current_file: | |
# Ingest the document and create the index | |
with st.spinner('Ingesting the file..'): | |
doc_files = os.listdir(doc_path) | |
for doc_file in doc_files: | |
os.remove(doc_path + doc_file) | |
bytes_data = uploaded_file.read() | |
with open(f"{doc_path}{uploaded_file.name}", "wb") as f: | |
f.write(bytes_data) | |
loader = SimpleDirectoryReader(doc_path, recursive=True, exclude_hidden=True) | |
documents = loader.load_data() | |
sidebar_placeholder.header("Current Processing Document:") | |
sidebar_placeholder.subheader(uploaded_file.name) | |
sidebar_placeholder.write(documents[0].get_text()[:500] + "...") | |
index = GPTVectorStoreIndex.from_documents( | |
documents, service_context=service_context | |
) | |
index.set_index_id("vector_index") | |
index.storage_context.persist(index_file) | |
st.session_state.current_file = uploaded_file.name | |
st.session_state.response = "" # clean up the response when new file is uploaded | |
st.success('Done!') | |
elif os.path.exists(index_file): | |
# Read from storage context | |
storage_context = StorageContext.from_defaults(persist_dir=index_file) | |
index = load_index_from_storage( | |
storage_context, index_id="vector_index", service_context=service_context | |
) | |
SimpleDirectoryReader = download_loader("SimpleDirectoryReader") | |
loader = SimpleDirectoryReader(doc_path, recursive=True, exclude_hidden=True) | |
documents = loader.load_data() | |
doc_filename = os.listdir(doc_path)[0] | |
sidebar_placeholder.header("Current Processing Document:") | |
sidebar_placeholder.subheader(doc_filename) | |
sidebar_placeholder.write(documents[0].get_text()[:500] + "...") | |
if index: | |
st.text_input("Ask something: ", key="prompt", on_change=send_click) | |
st.button("Send", on_click=send_click) | |
if st.session_state.response: | |
st.subheader("Response: ") | |
st.success(st.session_state.response, icon="🤖") | |
st.subheader("Debug information: ") | |
st.write("This is the formatted prompt template:") | |
st.code(st.session_state.lamalogs[0]['formatted_prompt_template']) | |
st.write("This is the initial response:") | |
st.code(st.session_state.lamalogs[1]['initial_response']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment