-
-
Save zjf/5044349 to your computer and use it in GitHub Desktop.
Backpropogation Algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## Demo | |
set.seed(12321) | |
W_all_test1 = list(matrix(rnorm(1, 0, 0.5), nc = 1), matrix(10, nc = 1)) | |
b_all_test1 = list(matrix(rnorm(1, 0, 0.5), nc = 1), matrix(-5, nc = 1)) | |
X = matrix(rnorm(200, 0, 2), ncol = 1) | |
Y = apply(X, 1, function(x){forward_propagation(x, W_all_test1, b_all_test1)}) | |
X.train = X[1:150,] | |
Y.train = Y[1:150] | |
X.test = X[151:200,] | |
Y.test = Y[151:200] | |
#plot(X, Y) | |
model = back_propagation(matrix(X.train, nc = 1), Y.train, c(1,1), 10, 0) | |
Y.pred = apply(matrix(X.test, nc = 1), 1, function(x){forward_propagation(x, model$W, model$b)}) | |
plot(Y.test, Y.pred) | |
## The following functions should be loaded first. | |
## http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm | |
act_f <- function(x){ | |
x = as.numeric(x) | |
return(1/(1+exp(-x))) | |
} | |
act_f_der <- function(x){ | |
x = as.numeric(x) | |
x1 = act_f(x1) | |
return(x1*(1-x1)) | |
} | |
forward_z <- function(a, W, b){ | |
a = as.numeric(a) | |
return(W %*% a + b) | |
} | |
forward_a <- function(z){ | |
return(act_f(z)) | |
} | |
forward_propagation <- function(x, W_all, b_all){ | |
n = length(W_all) | |
if(!is.array(x)) | |
x = matrix(x, nr = 1) | |
y = matrix(0, nrow(x), nrow(W_all[[length(W_all)]])) | |
for(j in 1:nrow(x)){ | |
a = as.numeric(x[j,]) | |
for(i in 1:n){ | |
z = forward_z(a, W_all[[i]], b_all[[i]]) | |
a = forward_a(z) | |
} | |
y[j, ] = a | |
} | |
return(y) | |
} | |
back_propagation <- function(X, Y, net_str, alpha, lambda, ...){ | |
if(!is.array(Y)){ | |
Y = matrix(Y, nc = 1) | |
} | |
m = dim(X)[1] | |
p = dim(X)[2] | |
n = length(as.numeric(net_str)) | |
W = list() | |
b = list() | |
args = list(...) | |
if(length(args) == 2){ | |
beta = args[[1]] | |
rho = args[[2]] | |
sparse = TRUE | |
}else{ | |
sparse = FALSE | |
} | |
## Init | |
set.seed(216) | |
for(i in 1:n){ | |
W = c(W, list(matrix(rnorm(net_str[i] * p, 0, 0.5), ncol = p))) | |
b = c(b, list(matrix(rnorm(net_str[i], 0, 0.5), ncol = 1))) | |
p = net_str[i] | |
} | |
W_new = W | |
b_new = b | |
err = 1 | |
k = 1 | |
while(err[k] > 0.00001){ | |
W_gradient = lapply(W, "*", lambda) | |
b_gradient = lapply(b, "*", 0) | |
## if there exits a sparsity constraint on the hidden units, | |
## then perform scan through samples computing a forward pass on each to | |
## accumulate (sum up) the activations and compute rho_real | |
if(sparse == TRUE){ | |
rho_real = lapply(W, function(x){matrix(numeric(nrow(x)), nc = 1)}) | |
for(i in 1:m){ | |
activation_step = X[i, ] | |
for(j in 1:n){ | |
activation_step = forward_propagation(activation_step, W[j], b[j]) | |
rho_real[[j]] = rho_real[[j]] + matrix(activation_step, nc = 1) | |
} | |
} | |
rho_real = lapply(rho_real, "/", m) | |
} | |
for(i in 1:m){ | |
activation_all = list(matrix(X[i, ], nc = 1)) | |
activation_step = X[i, ] | |
delta = lapply(W, function(x){numeric(nrow(x))}) | |
for(j in 1:n){ | |
activation_step = forward_propagation(activation_step, W[j], b[j]) | |
activation_all = c(activation_all, list(matrix(activation_step, nc = 1))) | |
} | |
delta[[n]] = -(Y[i, ]- activation_all[[n+1]]) * activation_all[[n+1]] * (1 - activation_all[[n+1]]) | |
W_gradient[[n]] = W_gradient[[n]] + as.matrix(delta[[n]], nc = 1) %*% t(activation_all[[n]]) / m | |
b_gradient[[n]] = b_gradient[[n]] + as.matrix(delta[[n]], nc = 1) / m | |
for(j in n:2){ | |
delta[[j-1]] = as.numeric(t(W[[j]]) %*% delta[[j]] + ifelse(rep(!sparse, net_str[j-1]), 0, beta*(-rho/rho_real[[j-1]]+(1-rho)/(1-rho_real[[j-1]])))) * activation_all[[j]] * (1 - activation_all[[j]]) | |
W_gradient[[j-1]] = W_gradient[[j-1]] + as.matrix(delta[[j-1]], nc = 1) %*% t(activation_all[[j-1]]) / m | |
b_gradient[[j-1]] = b_gradient[[j-1]] + as.matrix(delta[[j-1]], nc = 1) / m | |
} | |
} | |
for(i in 1:n){ | |
W_new[[i]] = W[[i]] - alpha * W_gradient[[i]] | |
b_new[[i]] = b[[i]] - alpha * b_gradient[[i]] | |
} | |
W = W_new | |
b = b_new | |
k = k + 1 | |
err = c(err, sum(c(unlist(W_gradient)^2, unlist(b_gradient)^2))*alpha^2) | |
print(c(k, err[k])) | |
} | |
return(list(W=W, b=b, k=k, err = err)) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment