-
-
Save zkan/5b68ac608d219b6d1fdcb448c0da8b08 to your computer and use it in GitHub Desktop.
Q-learning Tic-tac-toe
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
class TicTacToe: | |
def __init__(self, playerX, playerO): | |
self.board = [' ']*9 | |
self.playerX, self.playerO = playerX, playerO | |
self.playerX_turn = random.choice([True, False]) | |
def play_game(self): | |
self.playerX.start_game('X') | |
self.playerO.start_game('O') | |
while True: #yolo | |
if self.playerX_turn: | |
player, char, other_player = self.playerX, 'X', self.playerO | |
else: | |
player, char, other_player = self.playerO, 'O', self.playerX | |
if player.breed == "human": | |
self.display_board() | |
space = player.move(self.board) | |
if self.board[space-1] != ' ': # illegal move | |
player.reward(-99, self.board) # score of shame | |
break | |
self.board[space-1] = char | |
if self.player_wins(char): | |
player.reward(1, self.board) | |
other_player.reward(-1, self.board) | |
break | |
if self.board_full(): # tie game | |
player.reward(0.5, self.board) | |
other_player.reward(0.5, self.board) | |
break | |
other_player.reward(0, self.board) | |
self.playerX_turn = not self.playerX_turn | |
def player_wins(self, char): | |
for a,b,c in [(0,1,2), (3,4,5), (6,7,8), | |
(0,3,6), (1,4,7), (2,5,8), | |
(0,4,8), (2,4,6)]: | |
if char == self.board[a] == self.board[b] == self.board[c]: | |
return True | |
return False | |
def board_full(self): | |
return not any([space == ' ' for space in self.board]) | |
def display_board(self): | |
row = " {} | {} | {}" | |
hr = "\n-----------\n" | |
print (row + hr + row + hr + row).format(*self.board) | |
class Player(object): | |
def __init__(self): | |
self.breed = "human" | |
def start_game(self, char): | |
print "\nNew game!" | |
def move(self, board): | |
return int(raw_input("Your move? ")) | |
def reward(self, value, board): | |
print "{} rewarded: {}".format(self.breed, value) | |
def available_moves(self, board): | |
return [i+1 for i in range(0,9) if board[i] == ' '] | |
class RandomPlayer(Player): | |
def __init__(self): | |
self.breed = "random" | |
def reward(self, value, board): | |
pass | |
def start_game(self, char): | |
pass | |
def move(self, board): | |
return random.choice(self.available_moves(board)) | |
class MinimaxPlayer(Player): | |
def __init__(self): | |
self.breed = "minimax" | |
self.best_moves = {} | |
def start_game(self, char): | |
self.me = char | |
self.enemy = self.other(char) | |
def other(self, char): | |
return 'O' if char == 'X' else 'X' | |
def move(self, board): | |
if tuple(board) in self.best_moves: | |
return random.choice(self.best_moves[tuple(board)]) | |
if len(self.available_moves(board)) == 9: | |
return random.choice([1,3,7,9]) | |
best_yet = -2 | |
choices = [] | |
for move in self.available_moves(board): | |
board[move-1] = self.me | |
optimal = self.minimax(board, self.enemy, -2, 2) | |
board[move-1] = ' ' | |
if optimal > best_yet: | |
choices = [move] | |
best_yet = optimal | |
elif optimal == best_yet: | |
choices.append(move) | |
self.best_moves[tuple(board)] = choices | |
return random.choice(choices) | |
def minimax(self, board, char, alpha, beta): | |
if self.player_wins(self.me, board): | |
return 1 | |
if self.player_wins(self.enemy, board): | |
return -1 | |
if self.board_full(board): | |
return 0 | |
for move in self.available_moves(board): | |
board[move-1] = char | |
val = self.minimax(board, self.other(char), alpha, beta) | |
board[move-1] = ' ' | |
if char == self.me: | |
if val > alpha: | |
alpha = val | |
if alpha >= beta: | |
return beta | |
else: | |
if val < beta: | |
beta = val | |
if beta <= alpha: | |
return alpha | |
if char == self.me: | |
return alpha | |
else: | |
return beta | |
def player_wins(self, char, board): | |
for a,b,c in [(0,1,2), (3,4,5), (6,7,8), | |
(0,3,6), (1,4,7), (2,5,8), | |
(0,4,8), (2,4,6)]: | |
if char == board[a] == board[b] == board[c]: | |
return True | |
return False | |
def board_full(self, board): | |
return not any([space == ' ' for space in board]) | |
def reward(self, value, board): | |
pass | |
class MinimuddledPlayer(MinimaxPlayer): | |
def __init__(self, confusion=0.1): | |
super(MinimuddledPlayer, self).__init__() | |
self.breed = "muddled" | |
self.confusion = confusion | |
self.ideal_player = MinimaxPlayer() | |
def start_game(self, char): | |
self.ideal_player.me = char | |
self.ideal_player.enemy = self.other(char) | |
def move(self, board): | |
if random.random() > self.confusion: | |
return self.ideal_player.move(board) | |
else: | |
return random.choice(self.available_moves(board)) | |
class QLearningPlayer(Player): | |
def __init__(self, epsilon=0.2, alpha=0.3, gamma=0.9): | |
self.breed = "Qlearner" | |
self.harm_humans = False | |
self.q = {} # (state, action) keys: Q values | |
self.epsilon = epsilon # e-greedy chance of random exploration | |
self.alpha = alpha # learning rate | |
self.gamma = gamma # discount factor for future rewards | |
def start_game(self, char): | |
self.last_board = (' ',)*9 | |
self.last_move = None | |
def getQ(self, state, action): | |
# encourage exploration; "optimistic" 1.0 initial values | |
if self.q.get((state, action)) is None: | |
self.q[(state, action)] = 1.0 | |
return self.q.get((state, action)) | |
def move(self, board): | |
self.last_board = tuple(board) | |
actions = self.available_moves(board) | |
if random.random() < self.epsilon: # explore! | |
self.last_move = random.choice(actions) | |
return self.last_move | |
qs = [self.getQ(self.last_board, a) for a in actions] | |
maxQ = max(qs) | |
if qs.count(maxQ) > 1: | |
# more than 1 best option; choose among them randomly | |
best_options = [i for i in range(len(actions)) if qs[i] == maxQ] | |
i = random.choice(best_options) | |
else: | |
i = qs.index(maxQ) | |
self.last_move = actions[i] | |
return actions[i] | |
def reward(self, value, board): | |
if self.last_move: | |
self.learn(self.last_board, self.last_move, value, tuple(board)) | |
def learn(self, state, action, reward, result_state): | |
prev = self.getQ(state, action) | |
maxqnew = max([self.getQ(result_state, a) for a in self.available_moves(state)]) | |
self.q[(state, action)] = prev + self.alpha * ((reward + self.gamma*maxqnew) - prev) | |
# p1 = RandomPlayer() | |
# p1 = MinimaxPlayer() | |
# p1 = MinimuddledPlayer() | |
p1 = QLearningPlayer() | |
p2 = QLearningPlayer() | |
for i in xrange(0,200000): | |
t = TicTacToe(p1, p2) | |
t.play_game() | |
p1 = Player() | |
p2.epsilon = 0 | |
while True: | |
t = TicTacToe(p1, p2) | |
t.play_game() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment