Last active
January 10, 2024 06:37
-
-
Save zlapp/40126608b01a5732412da38277db9ff5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# https://github.com/samiraabnar/attention_flow | |
# https://github.com/google-research/vision_transformer/issues/27 | |
# https://github.com/google-research/vision_transformer/issues/18 | |
# https://github.com/faustomorales/vit-keras/blob/65724adcfd3979067ce24734f08df0afa745637d/vit_keras/visualize.py#L7-L45 | |
# https://github.com/jeonsworld/ViT-pytorch/blob/main/visualize_attention_map.ipynb | |
import torch | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from PIL import Image, ImageFilter | |
from torchvision import transforms | |
import cv2 | |
activation = {} | |
def get_attn_softmax(name): | |
def hook(model, input, output): | |
with torch.no_grad(): | |
input = input[0] | |
B, N, C = input.shape | |
qkv = ( | |
model.qkv(input) | |
.detach() | |
.reshape(B, N, 3, model.num_heads, C // model.num_heads) | |
.permute(2, 0, 3, 1, 4) | |
) | |
q, k, v = ( | |
qkv[0], | |
qkv[1], | |
qkv[2], | |
) # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * model.scale | |
attn = attn.softmax(dim=-1) | |
activation[name] = attn | |
return hook | |
# expects timm vis transformer model | |
def add_attn_vis_hook(model): | |
for idx, module in enumerate(list(model.blocks.children())): | |
module.attn.register_forward_hook(get_attn_softmax(f"attn{idx}")) | |
def get_mask(im,att_mat): | |
# Average the attention weights across all heads. | |
# att_mat,_ = torch.max(att_mat, dim=1) | |
att_mat = torch.mean(att_mat, dim=1) | |
# To account for residual connections, we add an identity matrix to the | |
# attention matrix and re-normalize the weights. | |
residual_att = torch.eye(att_mat.size(1)) | |
aug_att_mat = att_mat + residual_att | |
aug_att_mat = aug_att_mat / aug_att_mat.sum(dim=-1).unsqueeze(-1) | |
# Recursively multiply the weight matrices | |
joint_attentions = torch.zeros(aug_att_mat.size()) | |
joint_attentions[0] = aug_att_mat[0] | |
for n in range(1, aug_att_mat.size(0)): | |
joint_attentions[n] = torch.matmul(aug_att_mat[n], joint_attentions[n-1]) | |
# Attention from the output token to the input space. | |
v = joint_attentions[-1] | |
grid_size = int(np.sqrt(aug_att_mat.size(-1))) | |
mask = v[0, 1:].reshape(grid_size, grid_size).detach().numpy() | |
mask = cv2.resize(mask / mask.max(), im.size)[..., np.newaxis] | |
result = (mask * im).astype("uint8") | |
return result, joint_attentions, grid_size | |
def show_attention_map(model, img_path, shape): | |
add_attn_vis_hook(model) | |
im = Image.open(os.path.expandvars(img_path)) | |
im = im.resize((shape, shape)) | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
]) | |
logits = model(transform(im).unsqueeze(0)) | |
attn_weights_list = list(activation.values()) | |
result, joint_attentions, grid_size = get_mask(im,torch.cat(attn_weights_list)) | |
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 16)) | |
ax1.set_title('Original') | |
ax2.set_title('Attention Map') | |
_ = ax1.imshow(im) | |
_ = ax2.imshow(result) | |
probs = torch.nn.Softmax(dim=-1)(logits) | |
top5 = torch.argsort(probs, dim=-1, descending=True) | |
print("Prediction Label and Attention Map!\n") | |
for idx in top5[0, :5]: | |
print(f'{probs[0, idx.item()]:.5f} : {idx.item()}', end='') | |
for i, v in enumerate(joint_attentions): | |
# Attention from the output token to the input space. | |
mask = v[0, 1:].reshape(grid_size, grid_size).detach().numpy() | |
mask = cv2.resize(mask / mask.max(), im.size)[..., np.newaxis] | |
result = (mask * im).astype("uint8") | |
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(16, 16)) | |
ax1.set_title('Original') | |
ax2.set_title('Attention Map_%d Layer' % (i+1)) | |
_ = ax1.imshow(im) | |
_ = ax2.imshow(result) | |
plt.show() | |
if __name__ == "__main__": | |
import os | |
import sys | |
import timm | |
model_names = timm.list_models("vit*") | |
for model_name in model_names: | |
print(f"\n{model_name}\n") | |
m = timm.create_model(model_name, pretrained=True) | |
shape = eval(model_name[-3:]) | |
show_attention_map(m, sys.argv[1], shape) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment