Last active
August 29, 2015 14:25
-
-
Save zmjones/332fe7a8d9a760782f01 to your computer and use it in GitHub Desktop.
calibration plots for MLR
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
lrns = list(makeLearner("classif.rpart", predict.type = "prob"), | |
makeLearner("classif.nnet", predict.type = "prob")) | |
fit = lapply(lrns, train, task = iris.task) | |
pred = lapply(fit, predict, task = iris.task) | |
names(pred) = c("rpart", "nnet") | |
out = generateCalibrationData(pred) | |
plotCalibration(out) | |
fit = lapply(lrns, train, task = sonar.task) | |
pred = lapply(fit, predict, task = sonar.task) | |
names(pred) = c("rpart", "lda") | |
out = generateCalibrationData(pred) | |
plotCalibration(out, TRUE) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#' @export | |
generateCalibrationData = function(obj, breaks = "Sturges") UseMethod("generateCalibrationData") | |
#' @export | |
generateCalibrationData.Prediction = function(obj, breaks = "Sturges") { | |
checkPrediction(obj, task.type = "classif", predict.type = "prob") | |
generateCalibrationData.list(namedList("prediction", obj), breaks) | |
} | |
#' @export | |
generateCalibrationData.ResampleResult = function(obj, breaks = "Sturges") { | |
obj = getRRPredictions(obj) | |
checkPrediction(obj, task.type = "classif", predict.type = "prob") | |
generateCalibrationData.Prediction(obj, breaks) | |
} | |
#' @export | |
generateCalibrationData.BenchmarkResult = function(obj, breaks = "Sturges") { | |
tids = getBMRTaskIds(obj) | |
if (is.null(task.id)) | |
task.id = tids[1L] | |
else | |
assertChoice(task.id, tids) | |
obj = getBMRPredictions(obj, task.ids = task.id, as.df = FALSE)[[1L]] | |
for (x in obj) | |
checkPrediction(x, task.type = "classif", predict.type = "prob") | |
generateCalibrationData.list(obj, breaks) | |
} | |
#' @export | |
generateCalibrationData.list = function(obj, breaks = "Sturges") { | |
assertList(obj, c("Prediction", "ResampleResult"), min.len = 1L) | |
## unwrap ResampleResult to Prediction and set default names | |
if (inherits(obj[[1L]], "ResampleResult")) { | |
if (is.null(names(obj))) | |
names(obj) = extractSubList(obj, "learner.id") | |
obj = extractSubList(obj, "pred", simplify = FALSE) | |
} | |
assertList(obj, names = "unique") | |
td = obj[[1L]]$task.desc | |
out = lapply(obj, function(pred) { | |
df = data.frame("truth" = getPredictionTruth(pred), | |
getPredictionProbabilities(pred, cl = getTaskClassLevels(td))) | |
df = reshape2::melt(df, id.vars = "truth", value.name = "Probability", variable.name = "Class") | |
break.points = hist(df$Probability, breaks = breaks, plot = FALSE)$breaks | |
df$bin = cut(df$Probability, break.points, include.lowest = TRUE, ordered_results = TRUE) | |
plyr::ddply(df, "bin", function(x) { | |
tab = table(x$Class, x$truth) | |
s = rowSums(tab) | |
ifelse(s == 0, 0, diag(tab) / s) | |
}) | |
}) | |
names(out) = names(obj) | |
out = plyr::ldply(out, .id = "Learner") | |
if (length(td$class.levels) == 2L) | |
out = out[, -which(colnames(out) == td$negative)] | |
out$bin = as.factor(out$bin) | |
max_bin = sapply(strsplit(levels(out$bin), ",|]"), function(x) as.numeric(x[2])) | |
out$bin = ordered(out$bin, levels = levels(out$bin)[order(max_bin)]) | |
out = reshape2::melt(out, id.vars = c("Learner", "bin"), value.name = "Proportion", variable.name = "Class") | |
makeS3Obj("CalibrationData", | |
data = out, | |
task = td) | |
} | |
#' @export | |
plotCalibration = function(obj, smooth = FALSE) { | |
assertClass(obj, "CalibrationData") | |
p = ggplot(obj$data, aes_string("bin", "Proportion", color = "Class", group = "Class")) | |
if (smooth) | |
p = p + stat_smooth(se = FALSE, span = 2, method = "loess") | |
else | |
p = p + geom_point() + geom_line() | |
if (length(obj$data$Learner) > 1L) | |
p = p + facet_wrap(~ Learner) | |
p = p + labs(x = "Probability Bin", y = "Class Proportion") | |
p + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment